2017年北京林业大学水土保持学院725数学(自)之概率论与数理统计考研导师圈点必考题汇编
● 摘要
一、证明题
1. 设分布函数列敛于分布函数F (x ).
【答案】
对任意的点
:
则有
(1)
这时存在N , 使得当n>N时, 有
对任意的当
时, 有
由(1), (3)式可得
即有
2. 总体
(1)证明
, 结论得证.
其中θ>0是未知参数,又是参数的无偏估计和相合估计;
从而
于是,
这说明
是参数的无偏估计. 进一步,
这就证明了也是的相合估计. (2)似然函数为为
因而θ的最大似然估计为
第 2 页,共 41 页
弱收敛于连续的分布函数F (x ), 试证:
取M 充分大,
使有当
使有
时,
有
在
当
再令
上一致收
时,
有
,
对上述取定的M , 因为F (x )在闭区间[-M, M]上一致连续, 故可取它的k 个分
必存在某个i , 使得由(2)式知,
为取自该总体的样本,为样本均值.
(2)求的最大似然估计,它是无偏估计吗?是相合估计吗? 【答案】(1)总体
则
显然L (θ)是θ的减函数,且θ的取值范围
下求的均值与方差,由于x (n )的密度函数为
故
从而
这说明
不是θ的无偏估计,而是θ的渐近无偏估计. 又
因而 3. 设
为独立同分布的随机变量序列, 方差存在, 令
, 证明:则
服从大数定律.
对任意的
因而
证明有
所以由马尔可夫大数定律知
4. 设
为来自指数分布
服从大数定律. 的样本,
为来自指数分布
的样本,且两组
, 有
又设
为一列常数, 如果存在
是θ的相合估计.
常数c>0, 使得对一切n 有
【答案】不妨设
样本独立,其中
(1)求假设
是未知的正参数.
的似然比检验;
(2)证明上述检验法的拒绝域仅依赖于比值(3)求统计量
在原假设成立下的分布.
【答案】样本的联合密度函数为
第 3 页,共 41 页
参数空间分别为
下参数的最大似然估计
为
则似然比统计量为
而
在
由微分法容易求出在
下参数的最大似然估计
为
由求导可知,函数为
或者
这就证明了(2)的结论.
为先减后増的单峰函数,故此似然比检验拒绝域可等价写
注意到指数分布、伽玛分布与卡方分布间的关系,可得
再注意到
诸
与
诸
5. 验证:泊松分布的均值λ的共轭先验分布是伽玛分布.
【答案】泊松分布的概率函数为数为
对来自泊松分布
的样本
的后验分布为
若的先验分布为伽玛分布,其密度函
间的独立性,在原假
设
成立下,有如下抽样分布
:
即的后验分布为共轭先验分布.
第 4 页,共 41 页
仍为伽玛分布,这说明伽玛分布是泊松分布的均值的