2017年河北工业大学6107量子力学复试实战预测五套卷
● 摘要
一、计算题
1. 某物理体系由两个粒子组成,粒子间相互作用微弱,可以忽略。已知单粒子“轨道”态只有3种
:
(1)无自旋全同粒子。 (2)自旋
的全同粒子(例如电子)。
【答案】(1) s=0, 为玻色子,体系波函数应交换对称。
有如下六种:
(2)
单粒子态共有如下六种:
任取两个,可构成体系(交换)反对称态,如:
体系态共有或者,
从
种,即十五种。
三种轨道态任取两个,则可以构成一种轨道对称
态
及一种反对称态
态,共三种。 后者应与自旋三重态但轨道对称态还有3+3+9=15种。
相乘而构成体系反对称态,共3×3 = 9种。
型,共三种型,各与自旋单态配合,共三种体系态,故体系态共
前者应与自旋单态
相乘,而构成体系反对称
试分别就以下两种情况,求体系的可能(独立)状态数目。
2. 与电子一样,中子的自旋也是,并且具有磁矩旋角动量,如果中子在相互垂直的两个磁场可能值,对应的几率和平均 值分别是多少? 【答案】该体系中:
和
其中是一个常数,是中子的自中运动,求该体系的能级和波函数,
当能级之间发生跃迁时,可能的跃迁频率有几个,大小是多少?在各本征态中,自旋第三分量的
在
表象中设归一化的本征函数为
则有(能量本征值为):
久期方程为:从而可得:对应能量本征值.
的本征函数满足:
不妨设则此时满足的解为:
同理可得,
对应能量本征值的本征态为:
当发生能级跃迁时,可能的跃迁频率有两个,为(2)在
表像中,
的本征态为:
所以,在
态中:
的几率为:
的几率为:
其平均值为:在
态中:
的几率为:
的几率为:
其平均值为:
3. 设粒子从
入射,进入一维阶跃势场:当x <0时,如果粒子能量
试
而当x >0时
,
(1)写出波动方程式并求解; (2)求透射系数;
(3)求反射系数并求与透射系数之和. 【答案】(1)粒子波动方程为
令
则方程的解为
其中第一部分为入射波,第二部分为反射波
.
此即透射波函数.
由波函数连续及波函数导数连续有
解得
则波函数为其中
(2)由概率流密度公式入射波函数概率流密度为
:反射波函数概率流密度为
:
可知