2017年河北工业大学6107量子力学复试仿真模拟三套题
● 摘要
一、计算题
1. 设限制在边长为L 的立方体中的单粒子的本征能量与本征波函数是已知的,其中基态是非简并的,而第一激发态与第二激发态都是3重简并的. 具体而言,基态的本征能量与轨道波函数分别为
第1激发态的本征能量与轨道波函数分别为
第2激发态的本征能量与轨道波函数分别为且前三个单粒子能级是等间隔的.
设由4个上述单粒子构成的全同粒子体系,限制在边长为L 的立方体中. 计算体系的较低的2个本征能量及相应的简并度.
【答案】题中并未给出粒子是费米子还是玻色子,故分两种情况讨论: 由题意可知(1)粒子为费米子
此时粒子应该遵守泡利不相容原理,每个波函数最多容下两个粒子. 体系最低能量:对应波函数有
其简并度为6. 体系第一激发态能量(2)粒子为玻色子
此时粒子不受泡利不相容原理约束, 体系最低能量:体系第一激发态能量为:
2. 对于一维无限深势阱(1)写出单粒子能级
和波函数
的全同粒子在此势阱中,写出此系统基态和第一激发态的
第 2 页,共 30 页
Ⅰ
其简并度为:3×3=9.
其简并度为1.
其简并度为3.
(2)如果有两个无相互作用的自旋为
能量值和波函数。
【答案】二电子体系,总波函数反对称。一维势阱中,体系能级为:
(1)
基态:
空间部分波函数是对称的
:自旋部分波函数是反对称的:
总波函数:
(2)第一激发态:空间部分波函数:自旋部分波函数:
二电子体系的总波函数:
基态不简并,第一激发态是四重简并的。
3. 设一维粒子的HamiltonianH ,坐标算符为x. 利用利用能量本征态的完全性关系,
将
用
【答案】利用于是
第 3 页,共 30 页
和E. ,表出,其中
是能量本征值为E. ,的本征矢。
可得即
4. 己知氢原子的径向波函数(1)求归一化常数A. (2)己知连带勒让德函数(3)对于本征态【答案】⑴(2) 所以
本征函数可以表示为
其中a 为波尔半径. 求氢原子的归一化本征函数
其对应的能量、角动量、角动量z 分量各是多少?
|
(3)对于本征态
其对应的能量为:
角动量:
角动
量的z 分量:
5. 一质量为m 的粒子,可在宽为a 无限深势阱当中自由运动. 在t=0的初始时刻其波函数为
其中A 为实常数. (1)求A 使平均值?
(3)求t 时刻的波函数
满足归一化条件.
(2)如果进行能量测量,则能得到哪些能量值? 相应取这些能量值的概率又是多少? 再计算能量的
【答案】(1)无限深方势阱中粒子的本征波函数为初始时刻波函数可化为
由归一化条件有
(2)无限深方势阱中粒子的本征能量为
解得
.
故粒子可能测得能量即
第 4 页,共 30 页