当前位置:问答库>考研试题

2018年云南农业大学园林园艺学院314数学(农)之工程数学—线性代数考研仿真模拟五套题

  摘要

一、解答题

1.

已知

的秩为

2.

二次型

求实数a 的值;

求正交变换x=Qy使得f 化为标准型. 【答案】

⑴由

可得

则矩阵

解得B 矩阵的特征值为

:当

时,

得对应的特征向量为

当时,

得对应的特征向量为

对于

解得对应的特征向量为

将单位转化为

. 令X=Qy,

2.

已知三元二次型

其矩阵A 各行元素之和均为0, 且满足

其中

(Ⅰ)用正交变换把此二次型化为标准形,并写出所用正交变换; (Ⅱ)若A+kE:五正定,求k 的取值. 【答案】(Ⅰ)因为A 各行元素之和均为0,

即值

由征向量.

因为

的特征向量.

1的线性无关的特

,由此可知

是A 的特征

可知-1是A 的特征值

,不正交,将其正交化有

再单位化,可得

那么令

则有

(Ⅱ)因为A 的特征值为-1, -1, 0, 所以A+kE的特征值为k-l , k-1,k , 由A+kE正定知其特征值都大于0,

3.

设二次型

(1)证明二次型f

对应的矩阵为(2

)若

【答案】(1)由题意知,

正交且均为单位向量,证明f

在正交变换下的标准形为

专注考研专业课13年,提供海量考研优质文档!

故二次型/

对应的矩阵为(2)证明:

设则

而矩阵A 的秩

故f 在正交变换下的标准形为 4.

为三维单位列向量,并且

证明

(Ⅰ)齐次线性方程组Ax=0

有非零解

(Ⅱ)A 相似于矩阵

故Ax=0有非零解.

(Ⅱ

)由(Ⅰ)知向量

.

又且

另外,由

故可知

为A 的特征值,

为4的2重特征值,

为对应的特征向量.

为A 的3个

为4的单重特征值.

故A

有零特征值

的非零解即为

对应的特征

,由于

所以为矩阵对应特征值所以为矩阵对应特征值

所以

的特征向量

; 的特征向量; 也是矩阵的一个特征值;

【答案】(Ⅰ)由于A

为3

阶方阵,且

为两个正交的非零向量,从而线性无关. 故

线性无关的特征向量,

即A 相似于矩阵

二、计算题