当前位置:问答库>考研试题

2017年东北财经大学应用统计硕士复试实战预测五套卷

  摘要

一、简答题

1. 构建综合评价指数时需要考虑哪些方面的问题?

【答案】构建综合评价指数需要考虑如下几个方面的问题:

(1)进行理论研宄,其中包括统计指标理论以及统计指标体系的理论研宄,以便为确定所需的评价指标提供一定的理论依据。

(2)建立科学的评价指标体系。所建立的指标体系是否科学与合理,直接关系到评价结果的科学性和准确性。建立指标体系,首先应进行必要的定性研宄,对所研宄的问题进行深入的分析,尽量选择那些具有一定综合意义的代表性指标;其次,应尽可能运用多元统计的方法进行指标的筛选,以提高指标的客观性。

(3)评价方法研宄,主要包括综合评价指数的构造方法、指标的赋权方法以及各种评价方法的比较等。

2. 解释多元回归模型、多元回归方程、估计的多元回归方程的含义。

【答案】(1)多元回归模型:设因变量为y 如何依赖于自变量

式中

(2)多元回归方程:

根据回归模型的假定有方程,它描述了因变量y 的期望值与自变量

(3)估计的多元回归方程:

回归方程中的参数数据去估计它们。当用样本统计

时,就得到了估计的

多元回归方程,其一般形式为:

式中

是参数

称为偏回归系数。

3. 抽样误差影响因素分析。

【答案】影响抽样误差的因素主要有:(1)样本单位数目。在其他条件不变的情况下,抽样数目越多,抽样误差越小;抽样数目越少,抽样误差越大。当n=N时,就是全面调查,抽样误差此时为零。(2)总体标志变动程度。 在其他条件不变的情况下,总体标志变异程度越大,抽样误差越大;总体变异程度越小,抽样误差越小。(3)抽样方法。一般讲,不重复抽样的抽样误差

个自变量分别为

是模型的参数

描述因变量

为误差项。

称为多元回归

和误差项的方程称为多元回归模型。其一般形式可表示为

之间的关系。

是未知的,需要利用样本

去估计回归方程中的未知参

的估计值是因变量y 的估计值。其中

要小于重复抽样的抽样误差。当n 相对N 非常小时,两种抽样方法的 抽样误差相差很小,可忽略不计。(4)抽样组织方式。采用不同的抽样组织方式,也会有不同的抽样误差。一般讲分层抽样的抽样误差较小,而整群抽样的抽样误差较大。

4. 下列调查问卷中的提问都有问题,请修改。

(1)您和您爱人是否对现有住房满意? (2)您最近一次是几点上班的?

(3)绝大多数喝过明光牛奶的人都认为它口味纯正,您认为是这样的吗? 【答案】(1)您对现有住房满意吗?您爱人呢? (2)您最近一次的工作是几点上班? (3)您认为明光牛奶的口味纯正吗?

5. 分层抽样与整群抽样有何异同?它们分别适合于什么场合?

【答案】(1)相同点:分层抽样和整群抽样都是需要事先按某一标志对总体进行划分的随机抽样。

不同点主要在于:分层抽样的划分标志与调查标志有密切关系,而整群抽样的划分标志不一定与调查标志有 关;分层抽样在总体的每个层内随机抽样,而整群抽样在总体全部群体中随机抽取一部分群体;比较计算公式可知,分层抽样的抽样误差取决于各层总体方差的平均数,而整群抽样的抽样误差取决于总体的群间方差;分层抽 样的目的(优点)主要是缩小抽样误差,满足推断各子总体数量特征的需要,而整群抽样的目的(优点)主要是 扩大抽样单位,简化抽样组织工作。

(2)适用场合:分层抽样用于层间差异大而层内差异小时,以及为了满足分层次管理决策需要时;整群抽样用于群间差异小而群内差异大时,或只有以群体为抽样单位的抽样框时等。

6. 简述时间序列的构成要素。

【答案】时间序列的构成要素分为4种,即趋势、季节性或季节变动、周期性或循环波动、随机性或不规则波动。

(1)趋势是时间序列在长时期内呈现出来的某种持续向上或持续下降的变动,也称长期趋势;(2)季节性也称季节变动,它是时间序列在一年内重复出现的周期性波动;

(3)周期性也称循环波动,它是时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式变动;

(4)随机性也称不规则波动,是指偶然性因素对时间序列产生影响,致使时间序列呈现出某种随机波动。

二、计算题

7. 康祥医药公司2004年第三季度和第四季度三种药品的销售数据如表所示。

(1)计算三种药品销售额指数;

(2)以第四季度的销售额为权数,计算三种药品的价格指数以及由于价格变动而影响的销售额;

(3)利用指数体系推算三种药品的销售量指数以及由于销售量变动而影响的销售额。 【答案】(1)三种药品的销售额指数为:

(2)三种药品的价格指数为:

即第四季度与第三季

度相比,三种药品销售价格平均上升了3.59%,销售价格的上升使销售额增加的量为:

(3)由于销售额指数=销售价格指数x 销售量指数, 则

销售量变动而影响的销售额变动量为:

8. 设随机变量

的概率密度函数为

计算: