2018年厦门大学统计系432统计学[专业硕士]考研基础五套测试题
● 摘要
一、简答题
1. “假设检验的基本思路是:概率性质的反证法,主要依据的是:小概率事件原理”。你同意这种说法吗?简要叙述你对假设检验的理解和检验步骤。
【答案】同意。
假设检验所遵循的推断依据是统计中的“小概率原理”:小概率事件在一次试验中几乎是不会发生的。例如,在10000件的产品中,如果只有1件是次品,那么可以得知,在一次试验中随机抽取1件次品的概率就为此概率是非常小的。或者是说,在一次随机抽样试验中,次品几乎是不会被抽到的。反过来,如果从这批产品中任意抽取1件,恰好是次品,我们就可以断定,该次品率应该不是很小的,否则我们就不会那么轻易的就能抽到次品。从而,我们就有足够的理由否认产品的次品率是很低的假设。
假设检验的基本步骤为:第一,对所考察总体的分布形式或总体的某些未知参数做出某些假设,称之为原假设。第二,根据检验对象构造合适的检验统计量,并通过数理统计分析确定在原假设成立的条件下该检验统计量的抽样分布。第三,在给定的显著性水平下,根据抽样分布得出原假设成立时的临界值,由临界值构造拒绝域和接受域。第四,由所抽取的样本资料计算样本统计量的取值,并将其与临界值进行比较,从而对所提出的原假设做出接受还是拒绝的统计判断。
假设检验就是利用样本中所蕴含的信息对事先假设的总体情况做出推断。假设检验不是毫无根据的,而是在一定的统计概率下支持这种判断。
2. 试述统计总体及其特征。
【答案】总体是包含所研宄的全部个体(数据)的集合,它通常由所研宄的一些个体组成,如由多个企业构成的 集合,多个居民户构成的集合,多个人构成的集合,等等。总体根据其所包含的单位数目是否可数可以分为有限总体和无限总体。有限总体是指总体的范围能够明确确定,而且元素的数目是有限可数的。通常情况下,统计上 的总体是一组观测数据,而不是一群人或一些物品的集合。
总体具有的特征包括:(1)同质性,即总体单位都必须具有某一共同的品质标志属性或数量标志数值,它是 构成总体的条件;(2)大量性,即构成总体的总体单位数目要足够多;(3)差异性,即总体单位必须具有一个或 若干个品质变异标志或数量变异标志。
3. 在研究总体特征时,往往采用抽样调查,试给出采用抽样的理由。
【答案】
抽样调查()是一种非全面调查,它是按照随机原则从总体中抽取一部分单位作为样本进行观察研宄,以抽样样本的指标去推算总体指标的一种调查。随机原则要求所有调查单位都有一定的概率被抽取。根据抽选样本的方法,抽样调查可以分为概率抽样和非概率抽样两类。概率抽样是按照概率论和数理统计的原理从调查研宄的总体中,根据随机原则来抽选样本,并从数量上对总体的某些特征作出估计推断,对推断出可能出现的误差可以从概率意义上加以控制。习惯上将概率抽样称为抽样调查。抽样调查同其他调查比较,具有 如下几个特点:第一,样本单位按随机原则抽取,排除了主观因素对选取样本单位的影响;第二,能够根据部分 调查的实际资料对调查对象的总体的数量特征进行推断,从而达到对调查总体的认识;第三,在抽样调查中会存 在抽样误差,但是这个误差可以事先计算并加以控制。因此,抽样调查既能节省人力、物力、财力,又可以提高资料的时效性,而且能取得比较正确的全面统计资料,具有许多优点。
4. 概述相关分析与回归分析的联系与区别。
【答案】(1)相关分析和回归分析的联系
它们具有共同的研宄对象,都是对变量间相关关系的分析,二者可以相互补充。相关分析可以表明变量间相关关系的性质和程度,只有当变量间存在相当程度的相关关系时,进行回归分析去寻求变量间相关的具体数学形式才有实际的意义。同时,在进行相关分析时,如果要具体确定变量间相关的具体数学形式,又要依赖于回归分析,而且在多个变量的相关分析中相关系数的确定也是建立在回归分析基础上的。
(2)相关分析和回归分析的区别
①从研究目的上看,相关分析是用一定的数量指标(相关系数)度量变量间相互联系的方向和程度;回归分析却是要寻求变量间联系的具体数学形式,是要根据自变量的固定值去估计和预测因变量的平均值。
②从对变量的处理看,相关分析对称地对待相互联系的变量,不考虑二者的因果关系,也就是不区分自变量和因变量,相关的变量不一定具有因果关系,均视为随机变量;回归分析是在变量因果关系分析的基础上研宄其中的自变量的变动对因变量的具体影响,必须明确划分自变量和因变量,所以回归分析中对变量的处理是不对称的,在回归分析中通常假定自变量在重复抽样中是取固定值的非随机变量,只有因变量是具有一定概率分布的随机变量。
5. 简述均值、众数和中位数三者之间的关系及其在实际中的应用。
【答案】(1)众数、中位数和平均数的关系
从分布的角度看,众数始终是一组数据分布的最高峰值,中位数是处于一组数据中间位置上的值,而平均数 则是全部数据的算术平均。
对于具有单峰分布的大多数数据而言,众数、中位数和平均数之间具有以下关系:
①如果数据的分布是对称的,众数中位数和平均数必定相等,即
②如果数据是左偏分布,说明数据存在极小值,必然拉动平均数向极小值一方靠,而众数和中位数由于是位 置代表值,不受极值的影响,因此三者之间的关系表现为:
③如果数据是右偏分布,说明数据存在极大值,必然拉动平均数向极大值一方靠,
则
(2)众数、中位数和平均数在实际中的应用
①众数是一组数据分布的峰值,不受极端值的影响。其缺点是具有不唯一性,一组数据可能有一个众数,也可能有两个或多个众数,也可能没有众数。众数只有在数据量较多时才有意义,当数据量较少时,不宜使用众数。 众数主要适合作为分类数据的集中趋势测度值。
②中位数是一组数据中间位置上的代表值,不受数据极端值的影响。中位数主要适合作为顺序数据的集中趋势测度值。
③平均数是对数值型数据计算的,而且利用了全部数据信息,它是实际中应用最广泛的集中趋势测度值。当数据呈对称分布或接近对称分布时,3个代表值相等或接近相等,这时则应选择平均数作为集中趋势的代表值。 但平均数的主要缺点是易受数据极端值的影响,对于偏态分布的数据,平均数的代表性较差。因此,当数据为偏态分布,特别是当偏斜程度较大时,可以考虑选择众数或中位数。
6. 给出在一元线性回归中:
(1)相关系数的定义和直观意义;
(2)判定系数的定义和直观意义;
(3)相关系数和判定系数的关系。
【答案】(1)相关系数是根据样本数据计算的度量两个变量之间线性关系强度的统计量。若相关系数是根据总体全部数据计算的,称为总体相关系数,记为
称为样本相关系数,记为r 。样本
相关系数的计算公式为:
按上述计算公式计算的相关系数也称为线性相关系数,或称为相关系数。r 仅仅是x 若是根据样本数据计算的,则与y 之间线性关系的一个度量,它不能用于描述非线性关系。这意味着,r=0只表示两个变量之间不存在线性相关关系,并不说明变量之间没有任何关系,它们之间可能存在非线性相关关系。变量之间的非线性相关程度较大时,就可能会导致r=0。因此,当r=0或很小时,不能轻易得出两个变量之间不存在相关关系的结论,而应结合散点图做出合理的答释。
(2)回归平方和占总平方和的比例称为判定系数,记为其计算公式为:
相关内容
相关标签