当前位置:问答库>考研试题

2018年湘潭大学公共管理学院723统计学(一)考研基础五套测试题

  摘要

一、简答题

1. 要检验多个总体均值是否相等时,为什么不作两两比较,而用方差分析方法?

【答案】方差分析不仅可以提高检验的效率,同时由于它是将所有的样本信息结合在一起,也增加了分析的可靠性。

检验多个总体均值是否相等时,如果作两两比较,则需要进行多次的检验。随着增加个体显

著性检验的次数,偶然因素导致差别的可能性也会増加(并非均值真的存在差别)。而方差分

析方法则是同时考虑所有的样本,因此排除了错误累积的概率,从而避免拒绝一个真实的原假设。

2. 解释总体分布、样本分布和抽样分布的含义。

【答案】总体分布就是总体中所有个体关于某个变量(标志)的取值所形成的分布。假设X 为总体随机变量,那么总体分布就是指X 的分布。很显然,同一变量不同的总体或同一总体不同的变量,其分布是不同的。

样本分布就是样本中所有个体关于某个变量(标志)的取值所形成的分布。假设x 为总体随机变量X 在样本 中的体现,那么样本分布就是指x 的分布,或者说是关于《个观测值的分布。同样,同一变量不同的样本或同一 样本不同的变量,其分布是不同的。

一般意义上说,抽样分布就是样本统计量的概率分布,它由样本统计量的所有可能取值和与之对应的概率组 成。如果说样本分布是关于样本观测值的分布,那么抽样分布则是关于样本统计量的分布,而样本统计量是由样 本观测值计算而来的。具体地说,抽样分布就是从容量为W 的总体中抽取容量为n 的样本时,所有可能的样本 统计量所形成的分布。假设从容量为W 的有限总体中最多可以抽取m 个容量为n 的不同样本,那么把所有m 个样本统计值形成频率分布,就是抽样分布。可以说,抽样分布是研宄样本分布与总体分布之间的桥梁。

3. 什么是方差分析?它与总体均值的检验或检验有什么不同?其优势是什么?

【答案】方差分析就是通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。总体均值的检验或Z 检验,一次只能研宄两个样本,如果要检验多个总体的均值是否相等,那么作这样的两两比较十分烦琐。而且,每次检验两个的做法共需进行

的检验,如果次不同每次检验犯第I 类错误的概率都是0.05, 作多次检验会使犯第I 类错误的概率相应增加,而方差分析方法则是同时考虑所有的样本,因此排除了错误累积的概率,从而避免拒绝一个真实的原假设。

方差分析不仅可以提高检验的效率,同时由于它是将所有的样本信息结合在一起,也増加了分析的可靠性。

4. 重复抽样和不重复抽样相比,抽样均值抽样分布的标准差有什么不同?

【答案】样本均值的方差与抽样方法有关。在重复抽样条件下,样本均值的方差为总体方差的即

去修正重复抽样时样本均值在不重复抽样条件下,

样本均值的方差则需要用修正系数

的方差,即

对于无限总体进行不重复抽样时,可以按重复抽样来处理,因为其修正系数

对于有限总体,

当N 很大而n 很小时,其修正系数

来计算。

5. 在显著性检验过程中,经常遇到值这一概念,试回答以下问题:

(1)值能告诉我们什么信息?

(2)当相应的值较小时为什么要拒绝原假设? 趋向于1; 也趋向于1,

这时样本均值的方差也可以按公式

(3)显著性水平与值有何区别?

【答案】如果原假设为真,所得到的样本结果会像实际观测结果那么极端或更极端的概率,称为值,也称为观察到的显著性水平。

(1)值是当原假设正确时,得到所观测的数据的概率。如果原假设是正确的话,值告诉我们这样的观测数据会有多么的不可能得到。相当不可能得到的数据,就是原假设不对的合理证据。

(2)值是反映实际观测到的数据与原假设明实际观测到的数据与之间不一致程度的一个概率值。值越小,说之间不一致的程度就越大,检验的结果也就越显著。

(3)是犯第I 类错误的上限控制值,它只能提供检验结论可靠性的一个大致范围,而对于一个特定的假设检验问题,却无法给出观测数据与原假设之间不一致程度的精确度量。也就是说,仅从显著性水平来比较,

如果选择的值相同,

所有检验结论的可靠性都一样。而值可以测量出样本观测数据与原假设中假设的值的偏离程度。

二、计算题

6. 为了研宄不同类型的贫困地区人们的收入状况,现分别在两个地区进行了抽样,获取他们人均年收入数 据如表所示。

(1)在

(2)在下,能否认为地区2的收入水平高于地区1? 下,两个地区人均收入方差是否相等?

(3)前面分析结果的现实统计意义是什么?

【答案】(1)首先检验两地区的人均收入方差是否显著相等。假设检验为:

检验统计量的值为:

这是双侧检验,在

入方差显著不相等。

下面在两总体方差未知但不相等的条件下,对均值进行检验。

建立假设:

计算检验统计量为:

自由度为:

下,所以拒绝原假设,即两地区人均收

取自由度