2017年昆明理工大学质量发展研究院843高等代数考研冲刺密押题
● 摘要
一、选择题
1. 设A 是n 阶矩阵,a 是n 维向量,若秩
【答案】D 【解析】
2. 在n 维向量空间取出两个向量组,它们的秩( ).
A. 必相等
B. 可能相等亦可能不相等 C. 不相等 【答案】B 【解析】比如在
若选
从而否定A ,
若选
从而否定C ,
中选三个向量组
则线性方程组( )•
故选B.
3. 设A 、B 、C 均为n 阶矩阵,E 为n 阶单位矩阵,如B=E+AB, C=A+CA, 则B —C 为( ).
A.E B.-E C.A D.-A
【答案】A
【解析】由题设(E-A )B=E, 所以有
B (E-A )=E.
又C (E-A )=A,故
(B-C )(E-A )=E-A.
结合E-A 可逆,得B-C=E.
4.
设
是3维向量空
间的过渡矩阵为( )
.
的一组基, 则由
基
到
基
【答案】(A )
5. 设A 为n 阶可逆矩阵,交换A 的第1行与第2行得B ,则有( ).
A. 交换A*的第1列与第2列得B* B. 交换A*的第1行与第2行得B* C. 交换A*龙第1列与第2列得-B* D. 交换A*的第1行与第2行得-B* 【答案】C
【解析】解法1:题设P (1, 2)A=B,所以有
又
所以有
即A*右乘初等阵P (1,2)得-B*
解法2:题设P (1,2)A=B,所以丨B 丨=-丨A 丨. 因此
即
分别为A ,B 的伴随矩阵,
二、分析计算题
6. 设A 是n 级实对称矩阵. 证明:存在一正实数c 使对任一实n 维向量X 都有
【答案】根据本章习题10, 有正实数
使
是正定矩阵,因此有正实数c 使
.
都是正定矩阵.
于是对任一个n 维实向量X ,都有
因此
从而有
7. 证明:如果
【答案】因此有
由此得即
8. 设件为
在有解的情形,求出它的一般解. 【答案】对増广矩阵作初等行变换
证明:这方程组有解的充分必要条
其中
是不等于1的两个3次单位根. 由题设有
那么
相关内容
相关标签