当前位置:问答库>考研试题

2018年南开大学周恩来政府管理学院710心理学专业基础之现代心理与教育统计学考研核心题库

  摘要

一、概念题

1. 假设检验

【答案】在统计学中,通过样本统计量得出的差异作出一般性结论,判断总体参数之间是否存在差异,这种推论过程称假设检验。假设检验是推论统计中最重要的内容,它的基本任务就是事先对总体参数或总体分布形态做出一个假设,然后利用样本信息来判断原假设是否合理,从而决定是否接受原假设。检验的推理逻辑是一定概率保证下的反证法。一般包括四个步骤:(1)根

据问题要求提出原假设 (2)寻找检验统计量,用于提取样本中的用于推断的信息,要求在Ho 成立的条件下,统计量的分布已知且不包含任何未知参数;(3)由统计量的分布,计算“概率值”或确定拒绝域与接受域;(4)由具体样本值计算统计量的观测值,对统计假设作出判断。若Ho 的内容涉及到总体参数,称为参数假设检验,否则为非参数检验。

2. 检验的显著性水平

【答案】检验的显著性水平指在假设检验中,虚无假设正确时而拒绝虚无假设所犯错误的概率。在假设检验中有可能会犯错误,如果虚无假设正确却把它当成错误的加以拒绝,犯这类错误的概率用a 表示,a 就是假设检验中的显著性水平。通常选择α=0.05作为检验的显著性水平。也就是说每当实验结果发生的概率小于或等于0.05的时候,就拒绝虚无假设。

3. 总体

【答案】总体(population )又译“母体”,统计学术语,指一个统计问题中研宄对象的全体。由具有某种研宄特征的个体构成。从总体中抽取一部分个体,就构成总体的一个样本。如,研宄小学生的推理能力,记X 为每个小学生的推理能力,则X 的任一个可能取值是一个个体,X 的所有可能取值的集合则是一个总体。如果随机抽取n 个小学生,测量他们的推理能力为.Y .\这就是一个取自总体X 的样本。可根据包含个体的数目,可分为有限总体和无限总体。总体本身的大小是有限还是无限,取决于研宄问题的推理范围。心理学研宄中常为无限总体。在推断统计中被定义为一个随机变量,可运用概率论等数学工具进行统计推断。

4. 随机原则

【答案】随机原则指在进行抽样时,总体中每一个个体是否被抽取,并不由研究者主观决定,而是每一个体按照概率原理被抽取的可能性是相等的。由于随机抽样使每个个体有同等机会被抽取,因而有相当大的可能性使样本保持和总体有相同的结构,或者说,具有最大的可能使总体的

某些特征在样本中得以表现。这时可以说随机样本可以保证样本代表总体。

二、简答题

5. 简述卡方配合度检验和卡方独立性检验的区别。

【答案】卡方配合度检验主要用于检验单个名义型变量多个分类上的实计数和某个理论次数分布(如均匀分布)之间的差异显著性,因此可以将之理解成多组之间次数比较的方法;卡方独立性检验主要用于检验两个名义型变量各项分类上的次数之间是否存在显著关联,是考察名义型变量间相关性的方法。

6. 选择统计检验程序的方法时要考虑哪些条件,才能正确应用统计检验方法分析问题。

【答案】选择统计检验程序的方法时需考虑以下条件:

(1)看总体分布是否已知。如果已知,看是不是正态分布。如果已知样本分布为常态分布就可以选择参数检验法,如果总体分布未知就用非参数检验法。

(2)在参数检验中,如果总体分布为正态,总体方差已知,两样本独立或相关都可以采用Z 检验;如果总体方差未知,根据样本方差,采取不同的t 检验。如果总体分布非正态,总体方差已知,根据样本独立或相关采取

检验。

(3)根据题目考虑用单侧还是双侧检验。

(4)在非参数检验中,按照两个样本相关和不相关、精度与容量等,可以采用符号检验、秩和检验等方法。

7. 简述点估计和区间估计。

【答案】参数估计分为点估计和区间估计。

(1)点估计指用样本统计量来估计总体参数的值,因为样本统计量为数轴上某一点值,估计的结果也以一个点的数值表示,所以称为点估计。例如,对总体平均数的估计,用样本平均数一个好的估计量应该具备无偏性、有效性、一致性和充分性。由于估计量是一个随机变量,所以点估计以随机变量中的某一个值来作估计,很显然会产生一定的误差。若误差较小,这个点估计值还是一个好的估计值,若误差较大,这个点估计便失去了意义,而区间估计在一定意义上弥补了点估计的不足之处。

(2)区间估计指根据估计量以一定可靠程度推断总体参数所在的区间范围,是在点估计的基础上,用数轴上的一段距离表示未知参数可能落入的范围,不仅给出一个估计的范围,使总体参数包含在这个范围之内,而且还能给出估计精度并说明估计结果的有把握的程度。区间估计涉及以下几个概念:

①显著性水平和置信水平

估计总体参数落在某一区间时,可能犯错误的概率,用符号

为置信度或置信水平。

检验;如果总体方差未知,

根据独立和相关采取不同的表示,也称为信任系数。

②置信区间

在某一置信度时,总体参数所在的区域距离或区域长度称为置信区间。

区间估计的原理是样本分布理论。在计算区间估计值,解释估计的正确概率时,依据的是该样本统计量的分布规律及样本分布的标准误(SE )。样本分布可提供概率解释,而标准误的大小决定区间估计的长度。一般情况下,加大样本容量可使标准误变小。常见的有正态总体的均值和方差的区间估计等。

8. 如何区分点二列相关与二列相关?

【答案】(1)点二列相关法(point-biserail correlation)就是考察两列观测值一个为连续变量(点数据),另一个为“二分”称名变量(二分型数据)之间相关程度的统计方法。

二列相关法(biserail correlation)就是考察两列观测值一个为连续变量(点数据),另一个也是连续变量不过被按照某种标准人为的划分的二分变量之间相关程度的统计方法。

(2)点二列相关与二列相关的区别

二列相关不太常用,但有些数据只适用于这种方法。在测验中,二列相关常用于对项目区分度指标的确定。有时,某一题目实际获得的测验分数是连续性测量数据,这些分数的分布为正态,当人为地根据一定标准将其得分划分为对与错、通过与不通过两个类别时,计算该题目的区分度就要使用二列相关。如果题目的类型属于错与对这样的是非类客观选择题,计算该题目的区分度就应该选用点二列相关。二者之间的主要区别是二分变量是否为正态分布。总的原则是,如果不是十分明确,观测数据的分布形态是否为正态分布,这时,不管观测数据代表的是一个真正的二分变量,还是一个基于正态分布的人为二分变量,这时就用点二列相关。当确认数据分布形态为正态分布时,都应选用二列相关。只要有任何疑问,选用点二列相关总是较好的选择。在实际的研究当中,二列相关很少使用。

三、计算题

9. 下面是6岁与10岁两个年龄组错觉实验的结果,问这两组的错觉是否有显著差异。(请用两种方法)

【答案】题目中未明确指出两个样本之间有相关,因此认为两样本是独立样本。问题为是否有差异则用双侧检验。

(1)可以用秩和检验 ①提出假设两组的错觉没有显著差异。

两组的错觉有显著差异。

②选择检验的统计量并计算其值

a. 将两组数据排等级