2018年宁夏大学教育学院312心理学专业基础综合之现代心理与教育统计学考研核心题库
● 摘要
一、概念题
1. 次数
【答案】次数是指某一事件在某一类别中出现的数目,又称为频数(frequency ), 用f 表示。
2. 分层随机抽样
【答案】分层随机抽样是抽样方式的一种。按照总体已有的某些特征,将总体分成几个不同的部分(层),再分别在每部分中随机抽样,这种抽样的方法称为分层随机抽样。总原则是:各层内的变异要小,层与层间的变异越大越好。分层抽样充分利用了总体己知的信息,其样本代表性及推论的精确性一般优于简单随机抽样。对于同一总体,n 相同时,分层抽样误差小于简单随机抽样误差。
3. 假设检验
【答案】在统计学中,通过样本统计量得出的差异作出一般性结论,判断总体参数之间是否存在差异,这种推论过程称假设检验。假设检验是推论统计中最重要的内容,它的基本任务就是事先对总体参数或总体分布形态做出一个假设,然后利用样本信息来判断原假设是否合理,从而决定是否接受原假设。检验的推理逻辑是一定概率保证下的反证法。一般包括四个步骤:(1)根
据问题要求提出原假设 (2)寻找检验统计量,用于提取样本中的用于推断的信息,要求在Ho 成立的条件下,统计量的分布已知且不包含任何未知参数;(3)由统计量的分布,计算“概率值”或确定拒绝域与接受域;(4)由具体样本值计算统计量的观测值,对统计假设作出判断。若Ho 的内容涉及到总体参数,称为参数假设检验,否则为非参数检验。
4. 参数检验(parametric test)
【答案】参数检验是统计假设检验的一种。与“非参数检验”相对。适用于总体分布形式已知。且仅由少数几个参数便可确定的条件下。其检验方法常是基于正态性的假定,如t 检验、F 检验、正态线性回归、狭义多元分析等。其主要缺点在于,因其受到严格的关于正态性的条件限制,而大大制约了这类检验的应用或可信度的保证。
二、简答题
5. 如果你不知道两个变量概念之间的关系,只知道从两个变量的相关系数很高,请问你可能做出什么样的解释?
【答案】(1)两个变量之间的相关系数很高说明两变量存在共变关系,还不能判断两个变量之间的具体关系。
(2)根据相关系数的性质,系数值的大小只是表示变量变化趋势(0 (3)两个变量之间的相关性只是显示出变量的变化趋势,并不能显示出两个变量的因果关系。如果相关系数很高,还需要考察是正相关还是负相关,这样来说明两个变量究竟是向同一个方向还是相反方向变化。 6. 试举例说明各种数据类型之间的区别。 【答案】根据不同的分类标准,心理与教育科学研究中的数据可以区分为不同的类型。 (1)从数据的观测方法和来源划分,研究数据可区分为计数数据和测量数据两大类。 ①计数数据(count data ), 是指计算个数的数据,一般属性的调查获得的是此类数据,它具有独立的分类单位,一般都取整数形式。 ②测量数据(measurement data ), 又称计量数据是指借助于一定的测量工具或一定的测量标准而获得的数据。 (2)根据数据反映的测量水平,可把数据区分为称名数据、顺序数据、等距数据和比率数据四种类型。 ①称名数据(nominal data)只说明某一事物与其他事物在属性上的不同或类别上的差异,它具有独立的分类单位,其数值一般都取整数形式,只计算个数,并不说明事物之间差异的大小,在教育和心理类调查研究中,有关被试属性的调查资料,大多属于这类数据。 ②顺序数据(ordinal data )是指既无相等单位,也无绝对零的数据,是按事物某种属性的多少或大小,按次序将各个事物加以排列后获得的数据资料。如学生的等级评定、喜爱程度、品质等级、能力等级、兴趣等。这种数据不具有相等单位,也没有绝对零点,只能排出一个顺序,不能指出相互间的差别大小这类数据不能进行加减乘除运算。 ③等距数据(interval data )是有相等单位,但无绝对零的数据,如温度、各种能力分数、智商等。只能使用加减运算,不能使用乘除运算。 ④比率数据(ratio data )既表明量的大小,也有相等的单位,同时还具有绝对零点,如身高、体重、反应时、各种感觉阈值的物理量等都属于这种数据类型。 (3)按照数据是否具有连续性,把数据划分为离散数据和连续数据。 ①离散数据(discrete data)又称为不连续数据、间断数据。这类数据在任何两个数据点之 间所取的数值的个数是有限的。 ②连续数据(continuous data)指任意两个数据点之间都可以细分出无限多个大小不同的数值。至少在理论上从最高到最低之间都可以进一步细分。 7. 各种差异量数各有什么特点? 【答案】(1)标准差计算最严密,它根据全部数据求得,考虑到了每一个样本数据,测量具有代表性,适合代数法处理,受抽样变动的影响较小,反应灵敏。缺点是较难理解,运算较繁琐,易受极端值的影响。 (2)方差的描述作用不大,但是由于它具有可加性,是对一组数据中造成各种变异的总和的测量,通常采用方差的可加性分解并确定属于不同来源的变异性,并进一步说明各种变异对总结果的影响。因此,方差是推论统计中最常用的统计量数。 (3)全距计算简便,容易理解,适用于所有类型的数据,但它易受极值影响,测量也太粗糙,只能反映分布两极端值的差值,不能显示全部数据的差异情况,仅作为辅助量数使用。 (4)平均差容易理解,容易计算,能说明分布中全部数值的差异情况,缺点是会受两极数值的影响,但当数据较多时,这种影响较小,因有绝对值也不适合代数方法处理。 (5)百分位差易理解,易计算,不易受极值影响,但不能反映出分布的中间数值的差异情况,也仅用作补助量数。 (6)四分位差意义明确,计算方便容易,对极端值不敏感,较不受极端值影响。当组距不确定,其他差异量数都无法计算时,可以计算四分位差。但是,四分位差无法反映分布中所有数据的离散状况,不适合使用代数方法处理,受抽样变动影响较标准差大。 通过比较,可以发现标准差、方差价值较大,它们的应用也比较广泛,因此,一般称标准差、方差为高效差异量。相比较而言,其他差异量数,如全距、平均差、百分位差和四分位差等缺点比较明显,应用也受到限制,故称他们为低效差异量数。 8. 判断某个变量X 的样本是否符合卡方分布的方法是什么? 【答案】判断某个变量X 的样本是否符合卡方分布可以根据卡方分布适用的条件来考虑。 卡方运用于非参数检验。适用于样本是频数分布的情况。其数据是属于点计而来的间断变量;总体分布未知;不是对总体参数的检验,而是对总体分布的假设检验。计数资料的统计检验主要用卡方检验,可以用来同时检验一个因素两项或多项分类的实际观测数据,与某理论次数分布是否相一致的问题,或有无显著差异的问题;还可用于检验两个或两个以上因素各有多项分类之间,是否有关联或是否具有独立性的问题。 卡方检验用于计数资料的分析,对于数据资料本身的分布形态不作任何假设,所以从一定的意义上来讲,又是一种非参数检验的方法。 三、计算题