当前位置:问答库>考研试题

2018年山西农业大学林学院314数学(农)之工程数学—线性代数考研基础五套测试题

  摘要

一、解答题

1. 证明n

阶矩阵

与相似.

【答案】

设 分别求两个矩阵的特征值和特征向量为,

故A 的n 个特征值为

且A 是实对称矩阵,则其一定可以对角化,且

所以B 的n

个特征值也为

=-B的秩显然为1,故矩阵B 对应n-1

重特征值

对于n-1

重特征值由于矩阵(0E-B )

的特征向量应该有n-1个线性无关,进一步

矩阵B 存在n 个线性无关的特征向量,即矩阵B 一定可以对角化,且从而可

知n

阶矩阵

与相似.

2.

(1)计算行列式∣A ∣;

(2)当实数a 为何值时,

线性方程组【答案】

有无穷多解?并求其通解.

若要使得原线性方程组有无穷多解,

则有及得

此时,

原线性方程组增广矩阵为

进一步化为行最简形得

可知导出组的基础解系为

非齐次方程的特解为

故其通解为k 为任意常

数.

3. 求个齐次线件JTP

技使它的场础解系由下列向量成.

【答案】由题意,

设所求的方程组为

将代入得,

由这两个方程组知,

所设的方程组的系数都能满足方程组的基础解系为

4. 已知A 是3阶矩阵

(Ⅰ)写出与A 相似的矩阵B ; (Ⅱ)求A 的特征值和特征向量:

(Ⅲ)求秩

【答案】(Ⅰ)由于

则有

线性无关,故P 可逆.

即A 与B 相似.

故所求的方程组可取为

是3维线性无关列向量,且

解得此方程组

(Ⅱ

)由

A 的特征值为-1, -1,-1.

对于矩阵B ,

所以

可知矩阵B 的特征值为-1, -1,-1, 故矩阵

得特征向量

那么由:

是A 的特征向量,于是A 属于特征值-1

的所有特征向量是

全为0.

(Ⅲ

)由

芄中

相关内容

相关标签