2018年西北农林科技大学植物保护学院314数学(农)之工程数学—线性代数考研核心题库
● 摘要
一、解答题
1.
已知
其中E
是四阶单位矩阵
是四阶矩阵A 的转置矩阵
,
求矩阵A
【答案】
对
作恒等变形,
有即
由
故矩阵可逆.
则有
以下对矩阵做初等变换求逆,
所以有
2. 设n 阶实对称矩阵A
满足
(Ⅰ)求二次型(Ⅱ
)证明[!
【答案】
(Ⅰ)设
由于
从而
的规范形;
且秩
的值.
即或
贝
因为A 是
是正定矩阵,
并求行列式
为矩阵A 的特征值,
对应的特征向量为
又因
故有
解得
实对称矩阵,所以必可对角化,
且秩于是
那么矩阵A 的特征值为:1(k 个),-1(n-k 个).
故二次型
(Ⅱ)因
为
3.
已知
,求
故
的规范形为
所以矩阵B 的特征值是
:
由于B 的特征值全大于0且B 是对称矩阵,因此B 是正定矩阵,
且
【答案】
令
则且有
1
所以
4.
设矩阵求一个秩为2的方阵B. 使
【答案】
令
即
取.
进而解得的另一解为则有
.
的基础解系为:
方阵B 满足题意.
令
二、计算题
5.
设矩阵
可相似对角化,求x
【答案】先求A 的特征值
所以
(二重根)
,
(单重根)•
于是A 可相似对角化
A 有3个线性无关的特征向量
A 对应于二重特征值1有2个线性无关的特征向量
方程(A —E )x=0的系数矩阵的秩R (A-E )=1 另一方面,
于是
6. 求下列矩阵的特征值和特征向量:
【答案】
所以A
的特征值为
(三重根).
相关内容
相关标签