当前位置:问答库>考研试题

2018年西北农林科技大学植物保护学院314数学(农)之工程数学—线性代数考研强化五套模拟题

  摘要

一、解答题

1.

已知矩阵

可逆矩阵P ,使

若不相似则说明理由.

试判断矩阵A 和B 是否相似,若相似则求出

【答案】由矩阵A 的特征多项式

得到矩阵A

的特征值是

由矩阵B 的特征多项式

得到矩阵B

的特征值也是

时,由秩

A 可以相似对角化.

有2个线性无关的解,

时矩阵A 有2个线性无关的特征向量,矩阵

时矩阵B 只有1个线性无

只有1个线性无关的解,即

关的特征向量,矩阵B 不能相似对角化. 因此矩阵A 和B 不相似.

2. 设A

矩阵

且有唯一解. 证明:

矩阵

的解为【答案】

利用反证法,

假设以有

解矛盾,故假设不成立,

.

有惟一解知

则方程组

. 即

可逆.

为A 的转置矩阵).

易知

于是方程组

为可逆矩阵,

且方程组

只有零解.

使

.

只有零

有非零解,即存在

有非零解,这与

3.

已知

对角矩阵.

是矩阵的二重特征值,求a 的值,并求正交矩阵Q

使为

【答案】A 是实对称矩阵

可得a=2.

此时

是二重根,

于是

必有两个线性无关的特征向量,

于是

解(2E-A )x=0,

得特征向量将

正交化:

解(8E-A )x=0,

得特征向量先

再将单位化,得正交矩阵:

且有

4. 已知A

矩阵,齐次方程组

的基础解系是

有非零公共解,求a 的值并求公共解.

的解.

贝腕阵

又知齐

次方程组Bx=0

的基础解系是

(Ⅰ)求矩阵A ;

(Ⅱ

)如果齐次线性方程组

【答案】(1

)记

A

的行向量)是齐次线性方程组

的列向量(即矩阵

作初等行变换,有

得到

的基础解系为

所以矩阵

则既可由

线性表出,也可

(Ⅱ)设齐次线性方程组Ajc=0与Sx=0

的非零公共解为由

线性表出,

故可设

作初等行变换,有

于是

不全为

当a=0时,

解出

因此,Ax=0与Bx=0

的公共解为

其中t 为任意常数.

二、计算题

5.

为正定二次型,求a.

【答案】用赫尔维茨定理, 对f 的矩阵A 进行讨论

A

正定

合起来,

时,A 正定,从而f 正定.

6. 按自然数从小到大为标准次序,求下列各排列的逆序数:

(1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (4)2 4 1 3;

(5)1 3... (2n-1) 2 4 ... (2n ); (6)1 3... (2n-1) (2n ) (2n-2)... 2. 【答案】(1)此排列为自然排列,其逆序数为0;

(2)此排列的首位元素的逆序数为0; 第2位元素1的逆序数为1; 第3位元素3的逆序数为1; 末位元素2的逆序数为2, 故它的逆序数为0+1+1+2=4;

(3)此排列的前两位元素的逆序数均为0; 第3位元素2的逆序数为2; 末位元素1的逆序数