2018年西北农林科技大学园艺学院314数学(农)之工程数学—线性代数考研仿真模拟五套题
● 摘要
一、解答题
1.
设
(1)计算行列式∣A ∣;
(2)当实数a 为何值时,
线性方程组【答案】
有无穷多解?并求其通解.
若要使得原线性方程组有无穷多解,
则有及得
此时,
原线性方程组增广矩阵为
进一步化为行最简形得
可知导出组的基础解系为
非齐次方程的特解为
故其通解为k 为任意常
数.
2. 求个齐次线件JTP
技使它的场础解系由下列向量成.
【答案】由题意,
设所求的方程组为
由这两个方程组知,
所设的方程组的系数都能满足方程组的基础解系为
3.
已知矩阵
可逆矩阵P ,使
和
若不相似则说明理由.
故所求的方程组可取为
将
代入得,
构
解得此方程组
试判断矩阵A 和B 是否相似,若相似则求出
【答案】由矩阵A 的特征多项式
得到矩阵A
的特征值是
由矩阵B 的特征多项式
得到矩阵B
的特征值也是
当
时,由秩
知
A 可以相似对角化.
而
有2个线性无关的解,
即
时矩阵A 有2个线性无关的特征向量,矩阵
时矩阵B 只有1个线性无
只有1个线性无关的解,即
关的特征向量,矩阵B 不能相似对角化. 因此矩阵A 和B 不相似.
4. 设B
是
(I
)证明(II
)证明(III
)若【答案】⑴
矩阵
逆其中E 是n 阶单位矩阵.
且A 可对角化,
求行列式
(II )
(Ⅲ)设
则由
知
即
或1. 又存在可逆矩阵p ,
使或1.
二、计算题
5. 设方阵A 满足
证明A 及A+2£都可逆,
并求
及
【答案】(1)先证A 可逆. 原式得AfA-
五也就是知A 是可逆的,
且(2)再证可逆. 由
即
同理,知A+2E可逆,
且
6. 用初等行变换把下列矩阵化为行最简形矩阵:
(1
)
相关内容
相关标签