当前位置:问答库>考研试题

2018年云南农业大学园林园艺学院314数学(农)之工程数学—线性代数考研核心题库

  摘要

一、解答题

1. 设B

(I

)证明(II

)证明(III

)若【答案】⑴

(II )

(Ⅲ)设

则由

或1. 又存在可逆矩阵p ,

矩阵

且A 可对角化,

求行列式

其中E 是n 阶单位矩阵.

使或1.

2. 设二次

(Ⅰ)用正交变换化二次型(Ⅱ

)求【答案】

(Ⅰ)由

矩阵A 满足AB=0, 其

为标准形,并写出所用正交变换;

知,矩阵B 的列向量是齐次方程组Ax=0的解向量.

值(至少是二重)

根据

值是0, 0, 6.

正交化,

令的特征向量为

则是

的线性无关的特征向量.

由此可知

,是矩阵A 的特征

故知矩阵A

有特征值因此,矩阵A 的特征

那么由实对称矩阵不同特征值的特征向量相互正交,

解出

再对,单位化,得

那么经坐标变换

二次型化为标准形(Ⅱ)因为

所以由

进而

线性无关.

和向量组

线性表示;

于是

3.

设三维列向量组

(Ⅱ)

【答案】(Ⅰ)由于4

个三维列向量全为0

的数

又向量组记

和向量组

线性表示.

线性无关,

列向量组

(Ⅰ

)证明存在非零列向量

使得

可同时由向量组

时,

求出所有非零列向量

构成的向量组一定线性相关,故存在一组不即,

线性无关,故

不全为0

,

即存在非零列向量

不全为0.

使得

可同时由向量组

使得

线性无关;

向量组

(Ⅱ)易知,

求出齐次线性方程组向量

下面将方程组

所有非零解,即可得所有非零

的系数矩阵A 施行初等行变换化为行最简形:

于是,方程组的基础解系可选为

_意非零常数.

因此,

所有非零列向量 4.

设矩阵.

【答案】

求A 的特征值,并讨论A 是否可对角化? 若A 可对角化,则写出其对角

所有非零解

_

t 为任

于是A 的3

个特征值为(Ⅰ)当

时,A 有3个不同特征值,故4可对角化,且可对角化为