2017年西南科技大学统计学原理(同等学力加试)复试实战预测五套卷
● 摘要
一、简答题
1. 下面两个统计图分别是对某数据集中y 关于x 的线性回归分析后的残差(Residuad )请指出这个回归分析所存在的问题,并提出解诀方案。
【答案】由残差图可知,两个变量之间可能为非线性关系。表明所选择的线性回归分析模型不合理,应该考虑选 用非线性模型。处理非线性回归的基本方法是,通过变量变换,将非线性回归化为线性回归,然后用线性 回归方法处理。假定根据理论或经验,已获得输出变量与输入变量之间的非线性表达式,但表达式的系 数是未知的,要根据输入输出的n 次观察结果来确定系数的值。按最小二乘法原理来求出系数值。
此外,残差连续的出现在横坐标轴的上面或下面,两个变量也可能存在正自相关问题,即线性回归模型扰动 项的方差-协方差矩阵的非主对角线的元素不全为0, 存在扰动项的自相关。可以采用检验,检验方程是否存在一阶自相关问题,或采用
或仍用检验高阶自相关问题。如果存在自相关,可以采用可行广义最小二乘法法,但使用方差-协方差矩阵的稳健估计
值。
2. 回归分析中的误差序列有何基本假定?模型参数的最小二乘估计
模型用于预测,影响预测精度的因素有哪些? 具有哪些统计特性?若
)。独立【答案】(1
)误差项是一个服从正态分布的随机变量,且独立,即
为0的随机变量,即线性函数;②无偏性
具有最小方差的估计量。 对于所有的值分别是的方差都相同。 性意味着对于一个特定的值,它所对应的与其他值所对应的不相关。误差项是一个期望值(2
)模型参数的最小二乘估计的统计特性:①线性,即估计量的无偏估计;③有效性为随机变量的是所有线性无偏估计量中
(3)影响预测精度的因素有:①预测的信度要求。同样情况下,要求预测的把握度越高,贝_应的预测区间就越宽,精度越低;②总体y 分布的离散程度越大,相应的预测区间就越宽,预测精度越低;③样本观测点的多少n 。n 越大,相应的预测区间就越窄,预测精度越高;④
样本观测点中,解释变量x 分布的离散度。x 分布越离散,预测精度越高;⑤预测点离样本分布中心的距离。预测点越远离样本分布中心预测区间越宽,精度越低,越接近样本分布中心间越窄,精度越高。
3. 简述季节指数的计算步骤。
【答案】以移动平均趋势剔除法为例,计算季节指数的基本步骤为:
,(1)计算移动平均值(如果是季度数据采用4项移动平均,月份数据则采用12项移动平均)
并将其结果进行“中心化”处理,也就是将移动平均的结果再进行一次2项的移动平均,即得出“中心化移动平均值”
(2)计算移动平均的比值,也称为季节比率,即将序列的各观察值除以相应的中心化移动平均值,然后再计算出各比值的季度(或月份)平均值。
(3)季节指数调整。由于各季节指数的平均数应等于1或100%,若根据第2步计算的季节比率的平均值不等于1时,则需要进行调整。具体方法是:将第(2)步计算的每个季节比率的平均值除以它们的总平均值。
4. 简述指数平滑法的基本含义。
【答案】指数平滑法是对过去的观察值加权平均进行预测的一种方法,该方法使得第
形式,观察值时间越远,其权数也跟着呈现指数的下降,因而称为指数平滑。
使用指数平滑法时,关键的问题是确定一个合适的平滑系数因为不同的会对预测结果产生
不同的影响。当
值
大的权数;同样时,预测值仅仅是重复上一期的预测结果;
当时,预测值就是上一期实际
越接近1,模型对时间序列变化的反应就越及时,因为它对当前的实际值赋予了比预测值更越接近0, 意味着对当前的预测值赋予更大的权数,因此模型对时间序列变化的
但实际应用时,还应考虑预测误差,这里仍用误差期的预测值等于
期的实际观察值与第期预测值的加权平均值。指数平滑法是加权平均的一种特殊区反应就越慢。一般而言,当时间序列有较大的随机波动时,
宜选较大的以便能很快跟上近期的变化,当时间序列比较平稳时,宜选较小的
均方来衡量预测误差的大小,确定时,可选择几个进行预测,然后找出预测误差最小的作为最后的值。
5. 多元线性回归模型中有哪些基本的假定?
【答案】多元回归模型的基本假定有:
(1)自变量
(3)对于自变
量
(4)误差项是一个服从正态分布的随机变量,且相互独立,即
是非随机的、固定的,且相互之间互不相关(无多重共线性); 的方
差都相同,且不序列相关,
即 的所有
值(2)误差项是一个期望值为0的随机变量,即
6. 在单个总体均值的假设检验中,检验统计量要根据总体是否服从正态分布、总体方差是否己知,以及样本量的大小来确定。说明在不同情况下分别需要使用何种检验统计量。
【答案】在对单个总体均值进行假设检验时,采用何种检验统计量取决于所抽取的样本是大样本情况。
(1)在大样本情况下,样本均值的抽样分布近似服从正态分布。设总体均值为
为当总体方差已知时,总体均值的检验统计量为:
当总体方差
为:
(2)在小样本情况下,假设总体服从正态分布: ①当总体方差 已知时,样本均值的抽样分布近似服从正态分布。总体均值检验的统计量为:
②当总体方差未知时,需要用样本方差代替总体方差样本均值的抽样分布服从自由未知时,可以用样本方差来近似代替总体方差,此时总体均值检验的统计量总体方差
!还是小样本此外还需要区分总体是否服从正态分布、总体方差是否已知等几种度为(n -l )的t 分布。因此需要采用t 分布来检验总体均值。检验的统计量为:
二、计算题
7. 某位职员每天上班有两种方法:公共交通和自己开车。每种方法所需的时间纪录的样本数据如表所示。时间以分钟为单位。
表
(1)哪种方法更好?试解释之。
(2)画出每种方法的箱图。两个箱图的比较结果是否支持你的结论?
【答案】(1)公共交通所需时间的平均数与标准差分别为: