2018年四川大学教育部移植工程与移植免疫重点实验室306西医综合之生物化学考研基础五套测试题
● 摘要
一、名词解释
1. Edman 降解。
【答案】Edman 降解又称苯异硫氰酸酯法,
是指从肽链的游离的
列的过程。末端测定氨基酸残基的序末端 氨基酸被PITC 修饰,然后从肽链上分离修饰的氨基酸,再用乙酸乙酯抽提后,可用层析等方法鉴定。余下一条 缺少一个氨基酸残基的完整的肽链再进行下一轮循环。
2. 糖异生(gluconeogenesis )。
【答案】糖异生是指非糖物质在细胞内净转变成葡萄糖的过程。
3. 核心酶。
【答案】
核心酶是指没有亚基的RNA 聚合酶。大肠杆菌的RNA 聚合酶全酶由5个亚基组成
4.
【答案】是指在标准条件下(一般定为0.18mol/L阳离子浓度,400核苷酸长的片段)测得的复性率达0.5时的Cot 值
5. 同义密码子。
【答案】同义密码子是指编码同一种氨基酸的密码子。
6. (胰高血糖素)。
【答案】(胰高血糖素)是指在胰脏内合成、由胰岛朗格汉斯细胞分泌的一种多肽激素(29肽),与胰岛素的作用相拮抗,通过刺激糖原分解以提高血糖水平,是胰脏细胞对血糖浓度做出响应的重要信号分子。
7. 氨基酸(aminoacids )。
【答案】氨基酸是蛋白质的基本结构单位。组成蛋白质的常见氨基酸有20种,除脯氨酸及其衍生物外,其余氨基酸都是含有氨基的羧酸,
即羧酸中碳原子上的一个氢原子被氨基取代而生成的化合物。
8. snRNA 。
【答案】snRNA 主要存在于细胞核中,也存在于细胞质中,占细胞RNA
总量
分
子大小为58〜300bp , 称小分子RNA
。其中
同结构的U-RNA 称
为端有帽子结构、分子内含U 较多的称U-RNA ,不-端无帽子结构的按沉降系数和电泳迁移率排序,
如
snRNA 多与蛋白质结合在一起,等。以核糖核蛋白质(RNP )形式存在。
在hnRNA 及tRNA 的加工中有重要作用,其他snRNA 的控制细胞分化、协助细胞内物质运输、构成染色质等方面均有重要作用。
二、问答题
9. 翻译过程中需要哪四种组分?它们的功能是什么?
【答案】蛋白质的翻译至少需要以下四种组分。
(1
)
顺序。
(2)蛋白质因子。起始因子、延伸因子和释放因子分别协助翻译的起始、延伸和终止。在起始阶段,
起始因子
物;在延伸阶段
,
和
参与核糖体50S 和30S
大小两类亚基与三种延伸因子参与延长肽链。此阶段还需
形成70S 起始复合参与及消耗
或在蛋白质生物合成中
,能够作为翻译的直接模板,
由线性单链分子中每相邻3个核苷酸碱基组成,代表一种氨基酸的密码子。它决定蛋白质分子中的氨基酸排列供能,并且包括进位、成肽和转位三个步骤的反复循环。终止阶段,
当终止密码子出现在核糖体的A 位时,
没有相应的氨基酰
子进入核糖体A 位,与终止密码子相结合
,
相连的酯键水解,多肽链释放。
在蛋白质生物合成过程中
,(3
)氨基酰
辨认位多肽酰与能与之结合,此时即转入了终止阶段。释放因
随即诱导转肽酶变构而具有酯酶活性,使P
分子依赖其反密码环上的3个反密码子
密码子,
依赖
端的
(4
)核糖体。核糖体是由几种末端结合特定的氨基酸,从而按密码子指令将特定氨基酸与数十种蛋白质共同构成的超大分子复合体。核糖体的带到核糖体上“对号入座”,参与蛋白质多肽链的合成。 作用是将氨基酸连接起来,构成多肽链的“装配机”,即是蛋白质生物合成的场所。
10.对于许多微生物,谷氨酸脱氢酶(GDH )参与谷氨酸的分解代谢。谷氨酸在它的催化下,产生氨和酮戊二酸。酮戊二酸进入TCA 循环氧化。
(1)当大肠杆菌在以Glu 作为唯一碳源的培养基中生长的时候,GDH 的合成被强烈抑制。在这样的条件下,催化Asp 形成富马酸和氨的天冬氨酸酶(aspartase )是细胞在Glu 下生长所必需的。为什么? 试用一个循环途径来说明。
(2)当大肠杆菌培养在葡萄糖和氨的培养中,GDH 的合成加速,而且它是有活性的。这时,GDH 在细菌代谢中起什么作用?
【答案】⑴
(2)GDH 催化逆反应,促进氨同化成Glu ,而Glu 作为多种生物合成途径中氨基的供体。
11.说明5-氟尿嘧啶,氨基喋呤可作为代谢物的原理。
【答案】(1) 5-氟尿嘧啶可作为代谢物的原理:5-氟尿嘧啶能抑制胸苷酸合成酶,但5-氟尿嘧啶并不是抑制剂,其抑制作用是当它经细胞内的嘧啶合成的补救途径中转换成5-氟尿嘧啶核苷酸后,脱氧5-氟尿嘧啶核苷酸与胸
苷酸合成酶紧密结合,抑制该酶的活性,使得由dUMP 合成dTMP 的反应停止,从而抑制DNA 的合成。
(2)氨基喋呤可作为代谢物的原理:氨基噪呤的结构类似于叶酸,是二氢叶酸还原酶的竞争性抑制剂。氨基喋呤只通过非共价键相互作用与二氢叶酸还原酶紧密结合,导致四氢叶酸水平下降,
大大减少了dTMP 的形成,dTMP 的合成取决于亚甲基四氢叶酸的浓度,该浓度降低,dTMP 的合成速度减慢,从而抑制DNA 的合成。
12.以前有人曾经考虑过使用解偶联剂如2,
弃使用,为什么?
【答案】2, 二硝基苯酚作为一种解偶联剂,能够破坏线粒体内膜两侧的质子梯度,使质子梯度转变为热能,而不是A TP 。在解偶联状态下,电子传递过程完全是自由进行的,底物失去控制地被快速氧化,细胞的代谢速率将大幅度提高。这些将导致机体组织消耗其存在的能源形式,如糖原和脂肪,因此有减肥的功效。但是由于这种消耗是失去控制的消耗,同时消耗过程中过分产热,这势必会给机体带来强烈的副作用。
13.用标记3-磷酸甘油醛的一个碳原子
,并加入到酵母提取液中。短时间温育之后,果糖-1,
6-二磷酸的
酸的第二个
【答案】位含有标记。试问最初标记在3-磷酸甘油醛的什么部位上?果糖-1,6-二磷)上。果糖-1,6-二磷酸的第二个
(反应结构式略) 标记从哪里获得?(写出反应结构式) 最初标记在3-磷酸甘油醛的醛羰基碳原子(二硝基苯酚(DNP )作为减肥药,但不久即被放标记从磷酸二羟丙酮的羟基碳原子获得,该标记也来自3-磷酸甘油醛
14.简述胆红素的生成及正常代谢过程。
【答案】(1)胆红素的生成:胆红素是血红素的代谢产物。血红素在血红素加氧酶的催化下,释放出C0,形成胆绿素。胆绿素在胆绿素还原酶的催化下,还原生成胆红素。
(2)代谢过程:胆红素在血液中主要与清蛋白的结合而运输。血中胆红素可被肝细胞表面特异受体摄入肝 细胞,与胞浆中的两种载体蛋白形成复合物,进入内质网。在葡萄糖醛酸基转移酶的催化下,生成葡萄糖醛酸胆 红素(又称结合胆红素)。结合胆红素水溶性强,毒性低,可随胆
相关内容
相关标签