2017年哈尔滨工业大学威海校区831高等代数考研导师圈点必考题汇编
● 摘要
一、计算题
1. 某厂生产如图所示的扇形板,半径R=200mm,要求中心角a 为55°。产品检验时,一般用测量弦长1的办法来间接测量中心角α,如果测量弦长1时的误差角测量误差
是多少?
,问由此而引起的中心
图
【答案】如图,由故
当
时,
将
代入上式得
2. 验证下列求这样的一个
【答案】(1)在整个xOy 面内,
函数
,因此所给表达式是某一函数
的全微分。取
具有一阶连续偏导数,
且
则有
得
在整个xOy 平面内是某一函数的全微分,并
(2)在整个xOy 面内,函数
和
具有一阶连续偏导数,且
故所给表达式是某一函数
的全微分。取
则有
(3)在整个xOy 面内,且
则有
和
,故所给表达式是某一函
数
具有一阶连续偏导数,
的全微分。
取
(4)在整个xOy 面内,函数且
则有
和
具有一阶连续偏导数,
的全微分,
取
,故所给表达式为某一函
数
(5)解法一:在整个xOy 面内,连续偏导数,且分。取
则有
和
故所给表达式是某一函数
具有一阶的全微
解法二:(偏积分法)因函数
满足
故
其中
是y 的某个可导函数,由此得
又
必需满足
从而得(C 为任意常数)。因此
。
取C=0,就得到满足要求的一个
解法三:(凑微分法)利用微分运算法则直接凑出
因此可取
3. 设u (t )是周期为T 的周期函数。已知它的傅里叶级数的复数形式为
试写出u (t )的傅里叶级数的实数形式(即三角形式)。 【答案】由题设知因
可见
而c n 为实数,故
故
4. 求函数数。
【答案】按题意,方向又
在点
处沿从点
到点
的方向的方向函
故