当前位置:问答库>考研试题

2017年江苏大学理学院602线性代数考研仿真模拟题

  摘要

一、填空题

1. 已知

【答案】

2

是某二阶非齐次线性微分方程的三个解,则该方程的通解为_____。

因为由叠加原理知x-1与x -1是非齐次方程对应的齐次方程的解,且它们是线性无关的,于是根据线性方程通解结构得出以上结论。

2. 已知

解,则该方程满足条件

【答案】

【解析】

设该方程为

故通解为

3. 已知三向量a , b , c , 其中

【答案】±27 【解析】由题设知

由于

,则

c ∥(a ×b )

4. 已知向量_____。

【答案】1

【解析】由题意知,令

,则

,则

,故

要求r 取最小值,则可求

第 2 页,共 73 页

是某二阶常系数非齐次线性微分方程的3个

的解为y=______。

是任意常数。

的解

a 与b 的夹角为,,则=_____。

则当c 满足条件a=b×c 时,r 的最小值为

的极值。故令且 5.

【答案】

【解析】令

,解得

时,r 取到极小值,也是最小值,此时r=1.

=_____.

,则

所以

6.

设函数f 是可导函数,

【答案】

两边分别对X 求导得

解得

7. 设z=z(x ,y )是由方程

【答案】【解析】设

,则

第 3 页,共 73 页

由方程

,则

_____。

所确定,且,其中

【解析】在方程

确定的函数,则

=_____.

x=y=时,z=0,故

8. 已知幂级数为_____。

【答案】(0, 2]

【解析】利用阿贝尔定理,

由于幂级数

处收敛;

由于幂级数

处发散。故该幂级数的收敛域为

9. 若级数定_____。

【答案】收敛;发散

10.若向量X 与向量a={2,-1, 2}共线,且满足a ·X=-18, 则X=_____。

【答案】{-1, 2, -4}

【解析】由题意知,向量X 与向量a 共线,则令

解得

,故

绝对收敛,则级数

必定_____;若级数

条件收敛,则级数

在x=2处收敛,

则该幂级数在在x=0处发散,

则该幂级数在。

在x=2处收敛,在x=0处发散,则幂级数

的收敛域

二、选择题

11.直线L 为

A.L 平行于π B.L 在π上 C.L 垂直于π D.L 与π斜交 【答案】C

【解析】求出直线L 的方向向量为

第 4 页,共 73 页

平面π为则( )。