2018年华南农业大学生命科学学院314数学(农)之工程数学—线性代数考研基础五套测试题
● 摘要
一、解答题
1.
设矩阵.
【答案】
求A 的特征值,并讨论A 是否可对角化? 若A 可对角化,则写出其对角
于是A 的3
个特征值为(Ⅰ)当
且
时,A 有3个不同特征值,故4可对角化,且可对角化为
(Ⅱ)当a=0时
,
此时A 有二重特征值1,
仅对
应1个线性无关的特征向量,故此时A 不可对角化.
(Ⅲ)
当
时
,
此时
A
有二重特征
值
而
仅对应1个线性无关的特征向量,故此时A 不可对角化.
2. 已知A 是3阶矩阵,
(Ⅰ)证明
:(Ⅱ
)设
【答案】
(Ⅰ)由同特征值的特征向量,
故
又令即由
求
是3维非零列向量,若线性无关;
且
线性无关.
令
非零可知,是A 的个
线性无关,得齐次线性方程组
因为系数行列式为范德蒙行列式且其值不为0,
所以必有
线性无关;
(Ⅱ)因为
,
所以
即
故
3. 求个齐次线件JTP
技使它的场础解系由下列向量成.
【答案】由题意,
设所求的方程组为
由这两个方程组知,
所设的方程组的系数都能满足方程组的基础解系为
故所求的方程组可取为
将
代入得,
构
解得此方程组
专注考研专业课13年,提供海量考研优质文档!
4. 已知方程组量依次是
(Ⅰ)求矩阵 (Ⅱ)求【答案】
的基础解系
.
有无穷多解,矩阵
A
的特征值是
1, -1, 0, 对应的特征向
当a=-1及a=0时
,方程组均有无穷多解。
当a=-l时
,
则当g=0
时,则值的特征向量.
由
知
线性相关,不合题意. 线性无关,可作为三个不同特征
(
Ⅱ
)
知
的基础解系,即为
的特征向量
二、计算题
5. 设
为正定二次型,求a.
【答案】用赫尔维茨定理, 对f 的矩阵A 进行讨论
A 正定由
且由
合起来,当
时,A 正定,从而f 正定.