当前位置:问答库>考研试题

2018年华南农业大学生命科学学院314数学(农)之工程数学—线性代数考研基础五套测试题

  摘要

一、解答题

1.

设矩阵.

【答案】

求A 的特征值,并讨论A 是否可对角化? 若A 可对角化,则写出其对角

于是A 的3

个特征值为(Ⅰ)当

时,A 有3个不同特征值,故4可对角化,且可对角化为

(Ⅱ)当a=0时

此时A 有二重特征值1,

仅对

应1个线性无关的特征向量,故此时A 不可对角化.

(Ⅲ)

此时

A

有二重特征

仅对应1个线性无关的特征向量,故此时A 不可对角化.

2. 已知A 是3阶矩阵,

(Ⅰ)证明

:(Ⅱ

)设

【答案】

(Ⅰ)由同特征值的特征向量,

又令即由

是3维非零列向量,若线性无关;

线性无关.

非零可知,是A 的个

线性无关,得齐次线性方程组

因为系数行列式为范德蒙行列式且其值不为0,

所以必有

线性无关;

(Ⅱ)因为

,

所以

3. 求个齐次线件JTP

技使它的场础解系由下列向量成.

【答案】由题意,

设所求的方程组为

由这两个方程组知,

所设的方程组的系数都能满足方程组的基础解系为

故所求的方程组可取为

代入得,

解得此方程组

专注考研专业课13年,提供海量考研优质文档!

4. 已知方程组量依次是

(Ⅰ)求矩阵 (Ⅱ)求【答案】

的基础解系

.

有无穷多解,矩阵

A

的特征值是

1, -1, 0, 对应的特征向

当a=-1及a=0时

,方程组均有无穷多解。

当a=-l时

则当g=0

时,则值的特征向量.

线性相关,不合题意. 线性无关,可作为三个不同特征

的基础解系,即为

的特征向量

二、计算题

5. 设

为正定二次型,求a.

【答案】用赫尔维茨定理, 对f 的矩阵A 进行讨论

A 正定由

且由

合起来,当

时,A 正定,从而f 正定.