2018年重庆交通大学交通运输学院812运筹学考研基础五套测试题
● 摘要
一、选择题
1. 在网络中,设通过弧(v i ,v j )的流量和容量分别为f ij 和c ij ,若弧(v i ,v j )是非饱和弧则有( )
【答案】C
2. 动态规划是解决( )的一种数学方法。
A. 单阶段决策过程最优化
B. 多目标决策过程最优化
C. 多阶段决策过程最优化
D. 位目标决策过程最优化
【答案】C
【解析】动态规则是运筹学的一个分支,它是解决多阶段决策过程最优化的一种数学方法 3. 运输问题中,m+n-l个变量构成基本可解的充要条件是它不含( )。
A. 松弛变量
B. 多余变量
C. 闭回路
D. 圈
【答案】C
【解析】位于闭回路上的一组变量,它们对应的运输问题约束条件的系数列向量线性相关,因而在运输问题基可行解的迭代过程中,不允许出现全部顶点由填有数字的格构成的闭回路。也就是说,在确定运输问题的基可行解时,除要求基变量的个数为(m+n-l)外,还要求运输表中填有数字的格不构成闭回路。
4. 网络计划中的某工序(i ,j ),估计的最乐观时间为a ,最可能时间为m ,最保守时间为b ,则该工序的 期望工时和方差可以按下面( )计算。
【答案】A
二、填空题
5. 在灵敏度分析时, 当LP 某系数发生变化使原最优单纯形表中的解为该LP 的一个正侧解,但不是可行解, 为求新的最优解, 处理办法是:_____。
【答案】对偶单纯形法
6. 在用对偶单纯形法求解某线性规划问题时, 当进基变量x i 确定后,出基变量的选取原则是:_____。
【答案】
7. 无向连通图G 是欧拉图的充要条件是_____。
【答案】G 中无奇点
8. 运输问题任一基可行解非零分量的个数的条件是_____。
【答案】小于等于行数+列数-1
【解析】任意运输问题的基可行解可变量个数为:行数+列数一l 。然而基变量也可能等于0,所以运输问题 任一基可行解非零分量的个数小于等于行数+列数一1。
三、判断题
9. 结点最早时间同最迟时间相等的点连接的线路就是关键路线。( )
【答案】√
【解析】关键路线是指总时差为零的工作链,而该工作链是由一系列最早时间同最迟时间相等的点连接而成的。
10.网络图中任何一个结点都表示前一工序的结束和后一工序的开始。( )
【答案】×
【解析】网络图的起始点只表示一工序的开始,结束点只表示一工序的结束。
11.如果线性规划问题有最优解,则它一定是基可行解。( )
【答案】√
【解析】基解且可行才有可能是最优解。
12.任一图G=(V ,E )都存在支撑子图和支撑树。( )
【答案】×
【解析】当图中存在一个顶点,其次为O 时,则该图不存在支撑树。
13.若X 1, X 2分别是某一线性规划问题的最优解,则
其中λ1, λ2为正实数。( )
【答案】×
【解析】λ1, λ2不但应该是正实数,还应该满足λ1﹢λ2=1。 也是该线性规划问题的最优解,
四、证明题
14.设线性规划问题1是
()是其对偶问题的最优解。
又设线性规划问题2是
其中k i 是给定的常数,求证
【答案】问题1的矩阵表示为
其中
问题2的矩阵表示为
。 设X 1 为它的一个可行解,其对偶问题的最优解为
其中。
相关内容
相关标签