当前位置:问答库>考研试题

2017年国防科学技术大学理学院432统计学[专业硕士]之统计学考研仿真模拟题

  摘要

一、判断题

1. 在设计一个抽样方案时,样本量应该越大越好。( ) 【答案】

2. 若在实际应用中所处理的变量并不是严格的连续型变量,则不能使用正态分布。( )

【答案】×

【解析】在实际应用中,如果所处理的变量并不是严格的连续型变量,可以通过连续校正,然后再使用正态分布。

3. 概率密度曲线位于X 轴的上方并且与X 轴之间的面积为1。( )

【答案】√

【解析】概率密度函数是指用来代表连续型随机变量的概率分布的一种公式或运算,它的值始终大于等于0, 所以位于X 轴的上方,并且与X 轴之间的面积为1。

4. 回归分析是根据变量之间的主从或因果的回归关系,对变量之间的数量变化进行测定,建立数学模型,对因变量进行预测或估计的统计分析方法。( )

【答案】×

【解析】回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。回归分析中的数学模型众多。回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

5. 残差平方和是解释变量变动所引起的被解释变量的变差。( )

【答案】×

【解析】残差平方和是随机因素影响所引起的被解释变量的变差;回归平方和是指被解释变量的总体平方和与残差平方和之差。

6. 当时间序列中的观察值出现负数时不易计算増长率。( )

【答案】√

【解析】当时间序列中出现0或负数时,计算出的增长率,要么不符合数学公理,要么无法解释其实际意义。因此在这种情况下,适宜直接用绝对数进行分析。

7. —项研宄表明,司机驾车时因接打手机而发生事故的比例超过20%,用来检验这一结论的原假设和备择假设为

【答案】

第 2 页,共 46 页 ( )

【解析】在实际应用中,一般要把等号放在原假设里面。因此,建立的原假设和备择假设应该是

8. 动态指数和静态指数是按指数所反映的现象特征不同进行的分类。( )

【答案】×

【解析】动态指数和静态指数是按指数所反映的时间状态不同进行的分类;数量指标指数和质量指标指数是按指数所反映的现象特征不同进行的分类。

9. 有50个调查者分别对同一个正态总体进行抽样,样本量都是100, 总体方差未知。他们分别根据各自的样本数据得到总体均值的一个置信度为90%的置信区间(双侧),则这些置信区间中正好有45个区间会覆盖总体均值。( ) 【答案】

【解析】从大量样本来看,约有90%的置信区间会覆盖总体真值,但对50次抽样的结果来看,不一定刚好占90%。

10.公司的业绩与股票价格是因果关系,其中股票价格大跌是因,公司的业绩下降是果。 ( )

【答案】×

【解析】公司业绩与股票价格之间存在不确定的数量关系,即两者之间存在一定的相关关系,并非因果关系。

二、简答题

11.说明回归模型的假设以及当这些假设不成立时的应对方法。

【答案】(1)多元回归模型的基本假定有: ①自变量

③对于自变

④误差项是一个服从正态分布的随机变量,且相互独立,即

(2)若模型中存在多重共线性时,解决的方法有:

第一,将一个或多个相关的自变量从模型中剔除,使保留的自变量尽可能不相关。

第二,如果要在模型中保留所有的自变量,那就应该:避免根据统计量对单个参数进行检验;对因变量Y 值的推断(估计或预测)限定在自变量样本值的范围内。

若模型中存在序列相关时,解决的方法有:如果误差项不是相互独立的,则说明回归模型存在序列相关性

,这时首先要查明序列相关产生的原因。如果是回归模型选用不当,则应改用适当的回归模型;如果是缺少重要的自变量,则应増加自变量;如果以上两种方法都不能消除序列相

第 3 页,共 46 页 ; 是非随机的、固定的,且相互之间互不相关(无多重共线性) 的方

差都相同,且不序列相关,

的所有

值②误差项s 是一个期望值为0的随机变量,即

关性,则需采用迭代法、差分法等方法处理。

若模型中存在异方差性时,解决的方法有:当存在异方差性时,普通最小二乘估计不再具有最小方差线性估计的性质,而加权最小二乘估计则可以改进估计的性质。加权最小二乘估计对误差项方差小的项加一个大的权数,对误差项方差大的项加一个小的权数,因此加强了小方差性的地位,使离差平方和中各项的作用相同。

12.简述判定系数的含义和作用。

【答案】(1)判定系数的含义

回归平方和占总平方和的比例称为判定系数,记为其计算公式为:

(2)判定系数的作用

判定系数测度了回归直线对观测数据的拟合程度。若所有观测点都落在直线上,残差平方

可见

x 完全无助于解释y 的变差,拟合是完全的;如果y 的变化与x 无关,此时

的取值范围是则

越接近于7,表明回归平方和占总平方和的比例越大,回归直线与各观测点越接近,用x 的变化来解释y 值变差的部分就越多,回归直线的拟合程度就越好;反之越接近于0, 回归直线的拟合程度就越差。

13.简述统计分组的原则。

【答案】采用组距分组时,需要遵循不重不漏的原则。不重是指一项数据只能分在其中的某一组,不能在其他组 中重复出现;不漏是指组别能够穷尽。即在所分的全部组别中每项数据都能分在其中的某一组,不能遗漏。

为解决不重的问题,统计分组时习惯上规定“上组限不在内”。即当相邻两组的上下限重叠时,恰好等于某 一组上限的变量值不算在本组内,而计算在下一组内。而对于连续变量,可以采取相邻两组组限重叠的方法,根 据“上组限不在内”的规定解决不重的问题,也可以对一个组的上限值采用小数点的形式,小数点的位数根据所 要求的精度具体确定。

14.解释总平方和、回归平方和、残差平方和的含义,并说明它们之间的关系。

【答案】(1)总平方和(S^T)是实际观测值与其均值的离差平方和,即

(2)回归平方和(^狀)是各回归值

来解释的变差部分。

(3)残差平方和(SSE )是各实际观测值与回归值的离差平方和,即

称为误差平方和。

第 4 页,共 46 页 与实际观测值的均值y 的离差平方和,即其反映了在y 的总变差中由于x 与y 之间的线性关系引起的y 的变化部分,它是可以由回归直线它是除了的线性影响之外的其他因素对变差的作用,是不能由回归直线来解释的变差部分。其又