2018年辽宁工业大学汽车与交通工程学院918运筹学考研核心题库
● 摘要
一、选择题
1. 动态规划是解决( )的一种数学方法。
A. 单阶段决策过程最优化
B. 多目标决策过程最优化
C. 多阶段决策过程最优化
D. 位目标决策过程最优化
【答案】C
【解析】动态规则是运筹学的一个分支,它是解决多阶段决策过程最优化的一种数学方法 2.
是某个目标约束条件所对应的目标函数,该目标函数就从逻辑上来看所表达的
A. 恰好完成目标值
B. 不超过目标值
C. 完成和超额完成目标值
D. 不能表示任何意义
【答案】D
【解析】目标规划的目标函数是按各自目标约束的正、负偏差变量和赋予相应的优先因子及权系数而构造的。 当每一目标值确定后,决策者的要求是尽可能缩小偏离目标值。因此目标规划的目标函数只能是
3. 无约束最优化问题
)问题的( )。
A. 全局最优解
B. 局部最优解
C. 极点
D .K-T点
【答案】B
【解析】局部最优解即在X*的某邻域,满足 ,则称X*是函数的局部最优解。。 本题对应的目标函数是求maxZ ,所以没有任何意义。 中,如果在X*的某个领域内满足,则X ’是含义是( )。
4. 求解指派问题的匈牙利方法要求系数矩阵中每个元素都是( )。
A. 非负的
B. 大于零
C. 无约束
D. 非零常数
【答案】A
【解析】系数矩阵中的系数表示的是费用、成本、时间等。
二、填空题
5. 运输问题任一基可行解非零分量的个数的条件是_____。
【答案】小于等于行数+列数-1
【解析】任意运输问题的基可行解可变量个数为:行数+列数一l 。然而基变量也可能等于0,所以运输问题 任一基可行解非零分量的个数小于等于行数+列数一1。
6. 某整数规划模型,解其松弛问题得到最优解。若其中某分量x j 二场为非整数,用分支定界法求解时,针对 该分量构造的两个约束条件应为:_____。
【答案】
【解析】由分支定界法的原理可以,良容易得至“结果,其中〔b j 〕为不大于bj 的最大整数。
7. 图G=(V ,E )有生成树的充分必要条件是_____。
【答案】G 是连通图
【解析】图G 是连通图,如果G 不含圈,那么G 本身是一个树,从而G 使它自身的一个支撑树。现设G 含圈,任取一个圈,从圈中任意地去掉一条边,得到G 的一个支撑子图Gl 。如果Gl 不含圈,那么Gl 是G 的 一个支撑树,如果Gl 仍含圈,那么从Gl 中再任取一个圈,如此重复,最终可以得到G 的一个支撑子图Gk , 它不含圈,于是Gk 就是G 的一个支撑树。
8. 在用对偶单纯形法求解某线性规划问题时, 当进基变量x i 确定后,出基变量的选取原则是:_____。
【答案】
三、判断题
9. 运输问题是一种特殊的线性规划模型,因而其求解结果也可能出现四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。( )
【答案】×
【解析】运输问题是一种特殊的线性规划模型,它总存在可行解,或是存在惟一最优解,或
是有无穷最优解。
10.运输问题按照最小元素法给出的初始基可行解,从每一空格出发可以找出且仅能找出惟一的闭合回路。( )
【答案】√
【解析】从每一空格出发一定存在和可以找到惟一的闭回路。因(m+n-l)个数字格(基变量)对应的系数向量是一个基。任一空格(非基变量)对应的系数向量是这个基的线性组合。而这些向量构成了闭回路。
11.整数规划问题最优解的目标函数值一定优于其相应线性规划问题最优解的目标函数值。( )
【答案】×
【解析】因为附加了整数条件,其可行域比其相应线性规划问题的可行域减小,故整数规划问题最优解的目 标函数值一定不优于其相应线性规划问题最优解的目标函数值。
12.对自由变量x k ,
通常令
不可能同时出现
【答案】√
【解析】因为
不可能同时出现,其中。( ) 在用单纯型法求得的最优解中,所以。 不能同时为基变量,则至少有一个为0。故最优解中13.利用破圈法求赋权图的最小支撑树时,每次都是任取一个圈并去掉其中权最小的边,直到该赋权图不再 含圈时,便得到最小支撑树。( )
【答案】×
【解析】利用破圈法求最小支撑树时,每次任取一个圈,去掉圈中权最大的边。
四、证明题
14.现有一个线性规划问题(P 1):
, 其对偶问题的最优解为Y*=(y1, y2, y3, …ym )
另有一线性规划(P 2):
【答案】问题(P 2)的对偶问题为:
T 其中,d=(d 1, d 2, ...d 3) 。 求证: