2017年湖南师范大学数学与计算机科学学院958数学基础综合[专业硕士]之高等代数考研导师圈点必考题汇编
● 摘要
一、选择题
1.
设次型.
A. B. C. D. 【答案】D
【解析】方法1 用排除法令
则
这时f (l ,1,1)=0,即f 不是正定的. 从而否定A ,B ,C. 方法2
所以当方法3 设
时,f 为正定二次型.
对应的矩阵为A ,则
A 的3个顺序主子式为
所以当方法4令
时,A 的3个顺序主子式都大于0,则,为正定二次型,故选(D ). 为任意实数
不等于0
为非正实数
不等于-1
则当( )时,此时二次型为正定二
所以f 为正定的.
2. 设
A. 合同且相似 B. 合同但不相似 C. 不合同但相似 D. 不合同不相似 【答案】A
【解析】因为A ,B 都是实对称阵,且B 有4个特征值
又因为即A 也有4个特征值0,0,0,4. 因而存在正交阵
其中
故A 〜B.
再由
是正交阵,知T 也是正交阵,从而有
且由①式得
则A 与B ( ).
使
因此A 与B 合同.
3. 设A 为3阶矩阵,将A 的第2行加到第1行得8, 再将B 的第1列的一1倍加到第2列得C ,
记
A. B. C. D.
【答案】B
则( ).
【解析】由已知,有
于是
4. 设A 为n 阶可逆矩阵,交换A 的第1行与第2行得B ,则有( ).
A. 交换A*的第1列与第2列得B* B. 交换A*的第1行与第2行得B* C. 交换A*龙第1列与第2列得-B* D. 交换A*的第1行与第2行得-B* 【答案】C
【解析】解法1:题设P (1, 2)A=B,所以有
又
所以有
即A*右乘初等阵P (1,2)得-B*
解法2:题设P (1,2)A=B,所以丨B 丨=-丨A 丨. 因此
分别为A ,B 的伴随矩阵,
即
5. 设A ,B 为同阶可逆矩阵,则( ).
A.AB=BA
B. 存在可逆阵P ,使
C. 存在可逆阵C 使【答案】D 【解析】
D. 存在可逆阵P ,Q ,使PAQ=B
二、分析计算题
6. 设实数域上矩阵
在V
的一个基
(1)判定A 是否为正定阵,要求写出理由.
(2)设V 是实数域上的3维线性空间,V
上的一个双线性函数
下的度量矩阵为A , 证明:
欧氏空间的一个标准正交基.
【答案】(1)实对称阵A 的三个顺序主子式为
是V 的一个内积;并且求出v 对于这个内积所成的
相关内容
相关标签