当前位置:问答库>考研试题

2018年宁波大学海洋学院314数学(农)之工程数学—线性代数考研强化五套模拟题

  摘要

一、解答题

1.

(1)计算行列式∣A ∣;

(2)当实数a 为何值时,

线性方程组【答案】

有无穷多解?并求其通解.

若要使得原线性方程组有无穷多解,

则有及得

此时,

原线性方程组增广矩阵为

进一步化为行最简形得

可知导出组的基础解系为

非齐次方程的特解为

故其通解为k 为任意常

数.

2.

已知

二次型的秩为

2.

求实数a 的值;

求正交变换x=Qy使得f 化为标准型. 【答案】

⑴由

可得

则矩阵

解得B 矩阵的特征值为

:当

时,

得对应的特征向量为

当时,

得对应的特征向量为

对于

解得对应的特征向量为

将单位转化为

. 令X=Qy,

3.

设当a , b 为何值时,存在矩阵C 使得AC-CA=B,并求所有矩阵C.

【答案】显然由AC-CA=B可知,若C 存在,则必须是2阶的方阵,设则AC-CA=B

可变形为

即得到线性方程组

若要使C 存在,则此线性方程组必须有解,于是对方程组的增广矩阵进行初等行变换如下,

故当a=-1,b=0时,线性方程组有解,即存在矩阵C , 使得AC-CA=B. 此时

所以方程组的通解为

也就是满足AC-C4=B的矩阵C 为

其中

4. 设三阶方阵A 、B

满足式

的值.

为任意常数.

其中E 为三阶单位矩阵.

若求行列

【答案】

由矩阵

知则

. 可

逆.

所以