当前位置:问答库>考研试题

2018年青海民族大学物电院742高等数学之工程数学—线性代数考研核心题库

  摘要

一、解答题

1.

设的所有矩阵.

【答案】(1)对系数矩阵A 进行初等行变换如下:

E 为三阶单位矩阵,求方程组Ax=0的一个基础解系;求满足AB=E

得到方程组Ax=0

同解方程组得Ax=0

的一个基础解系为

(2)显然B 矩阵是一个4×3矩阵,设对矩阵(AE )进行初等行变换如

下:

由方程组可得矩阵B 对应的三列分别为

即满足AB=£;

的所有矩阵为

其中为任意常数.

2.

设矩阵

求一个秩为2的方阵B. 使

【答案】

取.

进而解得的另一解为则有

.

的基础解系为:

方阵B 满足题意.

3. 已知A 是3阶矩阵

(Ⅰ)写出与A 相似的矩阵B ;

是3维线性无关列向量,且

(Ⅱ)求A 的特征值和特征向量:

(Ⅲ)求秩

【答案】(Ⅰ)由于

则有

线性无关,故P 可逆.

即A 与B 相似.

(Ⅱ

)由

A 的特征值为-1, -1,-1.

对于矩阵B ,

所以

可知矩阵B 的特征值为-1, -1,-1, 故矩阵

得特征向量

那么由:

专注考研专业课13年,提供海量考研优质文档!

A 的特征向量,于是A

属于特征值-1的所有特征向量是

全为0.

(Ⅲ

)由

4.

已知

其中E

是四阶单位矩阵

是四阶矩阵A 的转置矩阵

芄中

求矩阵A

【答案】对

作恒等变形,有即

由故矩阵可逆.

则有

以下对矩阵做初等变换求逆,

所以有

二、计算题