2017年山东科技大学信息科学与工程学院432统计学[专业学位]考研导师圈点必考题汇编
● 摘要
一、判断题
1. 空间指数和定基指数均属于静态指数。( )
【答案】×
【解析】空间指数属于静态指数;定基指数属于动态指数。
2. 设总体样本容量n=9, 样本均值则在保留三位小数下,未知参数的置信度为的置信区间是
( ) 【答案】
为:
3. 方差分析过程中因子不独立,则存在交互影响;如果因子间是相互独立的,则无交互影响。
交互影响是对实验结果产生作用的一个新因素,有必要将它的影响作用也单独分离开来。( )
【答案】√
4. 动态指数和静态指数是按指数所反映的现象特征不同进行的分类。( )
【答案】×
【解析】动态指数和静态指数是按指数所反映的时间状态不同进行的分类;数量指标指数和质量指标指数是按指数所反映的现象特征不同进行的分类。
5. 分别来自两个总体的两个样本,当样本容量足够大时,样本均值之差的抽样分布服从正态分布。( )
【答案】√
6. 某地区医生人数逐年増加,1993年、1994年、1995年各年的环比增长率分别为8%、18%、15%。该地区三年来医生人数共増长了
【答案】×
【解析】由环比发展速度和定基增长速度之间的关系可得,该地区三年来医生人数的定基增长速度为
( ) 【解析】样本方差已知,且总体服从正态分布,故而未知参数的置信度为0.95的置信区间
7. 点估计是用样本的统计量直接估计和代表总体参数。( ) 【答案】
8. 方差分析中,检验时既可以采用双侧检验,也可以采用单侧检验。( )
【答案】×
【解析】在方差分析中,原假设所描述的是在按照自变量的取值分成的类中,因变量的均值相等,通常构造F 统计量来检验因变量的均值是否相等,此时采用单侧检验;当对各因变量的均值做多重比较的时候,采用双侧检验。
二、简答题
9. 正态分布所描述的随机现象有什么特点?为什么许多随机现象服从或近似服从正态分布?
【答案】(1)正态分布所描述的随机现象具有如下特点: ①正态曲线的图形是关于的对称钟形曲线,且峰值在处;
②正态分布的两个参数均值和标准差一旦确定,正态分布的具体形式也就唯一确定,不同参数取值的 正态分布构成一个完整的“正态分布族”。
③正态分布的均值可以是实数轴上的任意数值,它决定正态曲线的具体位置,标准差相同而均值不同 的正态曲线在坐标轴上体现为水平位移。 ④正态分布的标准差
⑤当为大于零的实数,它决定正态曲线的“陡_”或“扁平”程度。越大,正态曲线 越扁平;越小,正态曲线越陡峭。 的取值向横轴左右两个方向无限延伸时,正态曲线的左右两个尾端也无限渐近横轴,但理论上永远不会与之相父。
⑥与其他连续型随机变量相同,正态随机变量在特定区间上的取值概率由正态曲线下的面积给出,而且其曲线下的总面积等于1。
(2)如果原有总体是正态分布,那么,无论样本量的大小,样本均值的抽样分布都服从正态分布。若原有 总体的分布是非正态分布,随着样本量的增大(通常要求
方差为总体方差的,不论原来的总)体是否服从正态分布,样本均值的抽样分布都将趋于正态分布,其分布的数学期望为总体均值这就是统计上著名的中心极限定理。因此许多随机现象服从或近似服从正态分布。
10.给出在一元线性回归中:
(1)相关系数的定义和直观意义;
(2)判定系数的定义和直观意义;
(3)相关系数和判定系数的关系。
【答案】(1)相关系数是根据样本数据计算的度量两个变量之间线性关系强度的统计量。若相关系数是根据总体全部数据计算的,称为总体相关系数,记为
称为样本相关系数,记为r 。样本
若是根据样本数据计算的,则
相关系数的计算公式为:
按上述计算公式计算的相关系数也称为线性相关系数,或称为相关系数。r 仅仅是x 与y 之间线性关系的一个度量,它不能用于描述非线性关系。这意味着,r=0只表示两个变量之间不存在线性相关关系,并不说明变量之间没有任何关系,它们之间可能存在非线性相关关系。变量之间的非线性相关程度较大时,就可能会导致r=0。因此,当r=0或很小时,不能轻易得出两个变量之间不存在相关关系的结论,而应结合散点图做出合理的答释。
(2)回归平方和占总平方和的比例称为判定系数,记为其计算公式为:
判定系数测度了回归直线对观测数据的拟合程度。
的取值范围是越接近于1, 表明回归平方和占总平方和的比例越大,回归直线与各观测点越接近,用x 的变化来答释y 值变
差的部分就越多,回归直线的拟合程度就越好;反之,越接近于0, 回归直线的拟合程度就越差。
(3)相关系数和判定系数都是用来表明X 与Y 的关系,即X 对Y 的拟合程度。在一元线性回归中,相关系数实际上是判定系数的平方根。相关系数取值范围在卜之间。判定系数取值范围在[0, 1]之间。
11.在显著性检验过程中,经常遇到值这一概念,试回答以下问题:
(1)值能告诉我们什么信息?
(2)当相应的值较小时为什么要拒绝原假设?
(3)显著性水平与值有何区别?
【答案】如果原假设为真,所得到的样本结果会像实际观测结果那么极端或更极端的概率,称为值,也称为观察到的显著性水平。
(1)值是当原假设正确时,得到所观测的数据的概率。如果原假设是正确的话,值告诉我们这样的观测数据会有多么的不可能得到。相当不可能得到的数据,就是原假设不对的合理证据。
(2)值是反映实际观测到的数据与原假设明实际观测到的数据与之间不一致程度的一个概率值。值越小,说之间不一致的程度就越大,检验的结果也就越显著。
(3)是犯第I 类错误的上限控制值,它只能提供检验结论可靠性的一个大致范围,而对于一个特定的假设检验问题,却无法给出观测数据与原假设之间不一致程度的精确度量。也就是说,仅从显著性水平来比较,
如果选择的值相同,
所有检验结论的可靠性都一样。而值可以测量出样本观测数据与原假设中假设的值的偏离程度。