2018年成都信息工程大学应用数学学院603线性代数考研核心题库
● 摘要
一、解答题
1.
已知方程组量依次是
(Ⅰ)求矩阵 (Ⅱ
)求【答案】
当a=-1及a=0时,方程组均有无穷多解。 当a=-l时,
则当g=0时,
则值的特征向量.
由
知
线性相关,不合题意. 线性无关,可作为三个不同特征
的基础解系.
有无穷多解,矩阵A 的特征值是1, -1, 0, 对应的特征向
(Ⅱ
)
知
的基础解系,
即为
的特征向量
2. 证明n
阶矩阵
与相似.
【答案】
设 分别求两个矩阵的特征值和特征向量为,
故A 的n 个特征值为
且A 是实对称矩阵,则其一定可以对角化,且
所以B 的n 个特征值也为
=-B的秩显然为1,故矩阵B 对应
n-1
重特征值
对于n-1重特征值
由于矩阵(
0E-B )
的特征向量应该有n-1个线性无关,进一步
矩阵
B 存在n 个线性无关的特征向量,
即矩阵B
一定可以对角化,
且从而可
知n
阶矩阵
与
相似.
3. 设线性方程m
【答案】对线性方程组的增广矩阵
试就
讨论方程组的解的悄况,备解时求出其解.
作初等行变换,如下
(1)当
即
且
时
则方程组有惟一答:
(2)
当
且
即
且
时
则方程组有无穷多可得其一个特解
解.
此时原方程组与同解,解得其基础解系为
为任意常数. 此时方程组无解. 时
故原方程组的通解为
(3)当(
4)当 4. 设的所有矩阵.
即
时
此时方程组无解.
E 为三阶单位矩阵,求方程组Ax=0的一个基础解系;求满足AB=E
【答案】(
1)对系数矩阵
A 进行初等行变换如下:
得到方程组Ax=0同解方程组得Ax=0的一个基础解系为
(2)显然B 矩阵是一个4×3矩阵,设对矩阵(AE )进行初等行变换如
下:
由方程组可得矩阵B 对应的三列分别为