当前位置:问答库>考研试题

2017年兰州理工大学量子力学(同等学力加试)复试仿真模拟三套题

  摘要

一、计算题

1. 空间中有一势场射)。 (1)写出

时,被散射粒子的渐近波函数

的表达式;如果已知散

它在

时趋于零. 一质量为m 的自由粒子被此势场散射(弹性散

(2

)从被散射粒子的渐近波函数射振幅

求微分散射截面

读出散射振幅

【答案】(1)该渐进波函数为

其中

为径向波函数,则有

另外

时,

上式即

解得而

时,时,

微分散射截面

故所求为

(2)散射振幅即,

2. 粒子的一维运动满足薛定愕方程:(1)若

是薛定谔方程的两个解,证明

与时间无关.

(2)若势能V 不显含时间t ,用分离变数法导出不含时的薛定谔方程,并写出含时薛定谔方程的通解形式.

【答案】⑴

取式(1)之复共轭,得

对全空间积分: 即

所以与时间无关. (2)设

代入薛定谔方程,分离变量后,得E 为既不依赖t , 也不依赖r 的常数. 这样,所以

因此,通解可以表示为其中,

3. 设

是满足不含时的薛定谔方程

为氢原子束缚态能量本征函数(已归一),考虑自旋后,

某态表示为

在该态下计算(结果应尽量化简):

(1)在薄球壳(2)在薄球壳(3)

内找到粒子的几率。 内找到粒子且自旋沿

的几率。

为总角动量,计算在该态下的平均值。

在薄球壳

【答案】(1)由题意可得

:为:

内找到粒子的概率

(2)在薄球壳

内找到粒子且自旋沿+x的几率可表示 为:

已知在本征态表象下因此有:

(3)在

下的平均值为:

4. 设质量为m 的粒子处于势场的本征波函数

也属于正幂次级数,故有定态方程

式中:

则I 式可以化为:令

上方程可化简为

式解得

5. 氢原子处于状态(1)求轨道角动量的z

分量(3)求总磁矩【答案】⑴

的平均值。 的z 分量

故:

中,K 为非零常数. 在动量表象中求与能量E 对应

【答案】显然势场不含时,属于一维定态问题,而

则其中C 为归一化常数。

(2)求自旋角动量的z

分量的平均值。

的平均值。