2017年上海理工大学理学院829量子力学考研题库
● 摘要
一、简答题
1. 已知为一个算符么正算符?
【答案】满足关系式(a )的为厄密算符,满足关系式(b )的为幺正算符。
2. 非相对论量子力学的理论体系建立在一些基本假设的基础上,试举出二个以上这样的基本假设,并简述之。
【答案】(1)微观体系的状态被一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。
(2)力学量用厄密算符表示。如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量的算符,由经典表示式中将动量换为算符数。
(3)将体系的状态波函数
用算符的本征函数展开:
则在
盔中测量力学量得到结果为
(4)体系的状态波函数满足薛定谔方程
其中是体系的哈密顿算符。
的几率是
得到结果在
范围内的几率是
得出。表示力学量的算符组成完全系的本征函
满足如下的两式
问何为厄密算符?何为
(5)在全同粒子所组成的体系中,两全同粒子相互调换不改变体系的状态(全同性原理)。 以上选三个作为答案。
3. 能级的简并度指的是什么?
【答案】能级简并度是指对应于同一能量本征值的线性无关的本征态个数。
4. 归一化波函数是否可以含有任意相因子 【答案】可以。因为即用任意相因子归一化。
如果
对整个空间积分等于1,则
对整个空间积分也等于1。
去乘以波函数,既不影响体系的量子状态,也不影响波函数的
5. 请用泡利矩阵满足角动量对易关系。 【答案】电子的自旋算符
其中,
定义电子的自旋算符,并验证它们
6. 厄米算符的本征值与本征矢
分别具有什么性质?
【答案】本征值为实数,本征矢为正交、归一和完备的函数系。
7. 分别说明什么样的状态是束缚态、简并态与负宇称态?
【答案】当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是相应的简并度。将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。
8. 坐标分量算符与动量分量算符的对易关系是什么?并写出两者满足的测不准关系。 【答案】对易关系为
测不准关系为
9. 量子力学中的力学量算符有哪些性质? 为什么需要这些性质?
【答案】量子力学中力学量算符为厄米算符,因而具有所有厄米算符的性质.
量子力学中力学量算符为厄米算符是由力学量算符本征值必须为实数决定的,比如,力学量的平均值为实数,因而对求平均值的式子求共轭后,其值应该不变,而求平均值时算符求共轭后式子值不变即要求算符为厄米算符.
10.什么是隧道效应,并举例说明。
【答案】粒子的能量小于势垒高度时仍能贯穿势垒的现象称为隧道效应,如金属电子冷发射和衰变现象都是隧道效应产生的。
二、计算题
11.考虑两个电子组成的系统。它们空间部分波函数在交换电子空间部分坐标时可以是对称的或反对称的。空间部分波函数是反对称时对应总的自旋平方对应总的自旋平方
本征值为
空间部分波函数对称时分别针对空间部分波函
的本征值为
本征值为0。假设两电子系统哈密顿量为
数是反对称和对称两种情形,求体系的能量。(提示:单电子自旋角动量平方算符
)。 【答案】利用应能量:
可知,空间部分波函数反对称时:对
空间部分波函数对称时:对应能量:
12.对于一个限制在边长为L 的立方体中的自旋为1/2、质量为m 的粒子,计算基态与第二激发态的本征能量及相应的本征态波函数.
【答案】这是一个三维方势阱问题,例子波函数为
S 为自旋波函数. 可分离变量得
最终解得
代表例子自旋朝上和朝下两种状态.
由于粒子自旋此时并不会对粒子能量产生影响,故
粒子能量基态:对应波函数为:例子第一激发态能量:对应波函数有:
相关内容
相关标签