2017年上海交通大学密西根学院829电磁学和量子力学之量子力学导论考研题库
● 摘要
一、简答题
1. 电子在位置和自旋表象下,波函数【答案】
利用
的几率密度;
2. 写出在【答案】
3. 厄米算符的本征值与本征矢
表示粒子在
如何归一化?解释各项的几率意义。
进行归一化,其中
:
处
的几率密度。
表示粒子在
|
处
表象中的泡利矩阵。
分别具有什么性质?
【答案】本征值为实数,本征矢为正交、归一和完备的函数系。
4. 如果算符表示力学量那么当体系处于的本征态时,问该力学量是否有确定的值? 【答案】是,
其确定值就是在本征态的本征值。
5. 归一化波函数是否可以含有任意相因子【答案】可以。因为即用任意相因子
如果
对整个空间积分也等于1。
对整个空间积分等于1,则
去乘以波函数,既不影响体系的量子状态,也不影响波函数的
归一化。
6. 什么是费米子? 什么是玻色子? 两者各自服从什么样的统计分布规律?
【答案】费米子是自旋为半奇数的粒子,玻色子是自旋为整数的粒子. 费米子遵守费米-狄拉克统计规律,玻色子遵从玻色-爱因斯坦统计规律.
7. 在量子力学中,能不能同时用粒子坐标和动量的确定值来描写粒子的量子状态?
【答案】不能。因为在量子力学中,粒子具有波料二象性,粒子的坐标和动量不可能同时具有确定值。
8. 将描写的体系量子状态波函数乘上一个常数后,所描写的体系量子状态是否改变? 【答案】不改变。根据
对波函数的统计解释,描写体系量子状态的波函数是概率波,由于
粒子必定要在空间中的某一点出现,所以粒子在空间各点出现的概率总和等于1,因而粒子在空间各点出现概率只决定于波函 数在空间各点的相对强度。
9. 写出由两个自旋态矢构成的总自旋为0的态矢和自旋为1的态矢。 【答案】总自旋为0:总自旋为1:
10.描写全同粒子体系状态的波函数有何特点?
【答案】描写全同粒子体系状态的波函数只能是对称的或者反对称的,它们的对称性不随时间变化。
二、计算题
11.考虑一维双势阱:
(1)推导在x=a处波函数的连接条件. (2)对于偶宇称的解,即征值的数目.
【答案】(1)薛定谔方程可表示为
OT 为粒子质量,
为方程的奇点,在x=a
点处
对上述方程积分
得出
(2)由题意知当x >a 时
,当-a <x <a 时,
其中
其中
考虑到束缚态,因此解为
考虑到偶宇称,因此解为
结合x=a处的边界条件和此处的波函数连续条件,可得
化去A , C后可得,
此即能量本征值所需要满足的方程.
不存在,表现为
不连续。
求束缚态能量本征值满足的方程,并用图解法说明本
其中
图
所以满足此方程的本征值只有一个.
12.质量为m 的粒子处于角频率为的一维谐振子势中.
(a )写出在坐标表象中的哈密顿算符,本征值及本征函数(可不归一化). (b )写出在动量表象中的哈密顿算符.
(c )证明在动量表象中,哈密顿算符的矩阵元为
.
【答案】(a )在坐标表象中一维谐振子的哈密顿算符为本征值和波函数
(b )在动量表象中坐标算符可表示为
则哈密顿算符为
(c )在动量表象中哈密顿的矩阵元可表示为
13.某物理体系由两个粒子组成,粒子间相互作用微弱,可以忽略。已知单粒子“轨道”态只有3种
:
(1)无自旋全同粒子。 (2)自旋
的全同粒子(例如电子)。
则一维谐振子的势能为
试分别就以下两种情况,求体系的可能(独立)状态数目。
相关内容
相关标签