当前位置:问答库>考研试题

2017年河南大学黄河文明传承与现代文明建设河南省协同创新中心601高等数学考研冲刺密押题

  摘要

一、选择题

1. 设

为球面

【答案】B

【解析】对于第二类面积分,若曲线

(包含侧)关于x=0(即

做标面)对称,则

这里曲面

关于x=0对称,而A 、C 、D 三项中的被积函数

,关于X 都是偶函数,

上半部分的上侧,则下列结论不正确的是( )。

则其积分为零,而B 项中的被积函数X 为X 的积函数,则

被平面z=0及z=1所截得的第一卦限的部分的前侧,

【答案】A

【解析】积分曲面在yOz 平面上的投影为

第 2 页,共 52 页

2.

是柱面

,则此时

曲面的方程为

3. 设u y )(x ,在平面有界闭区域D 上连续,在D 的内部具有二阶连续偏导数,且满足及

,则( )

A.u (x ,y )的最大值点和最小值点必定都在区域D 的边界上 B.u (x ,y )的最大值点和最小值点必定都在区域D 的内部

C.u (x ,y )的最大值点在区域D 的内部,最小值点在区域D 的边界上 D.u (x ,y )的最小值点在区域D 的内部,最大值点在区域D 的边界上 【答案】A

【解析】由于u (x ,y )在平面有界闭区域D 上连续,故u (x ,y )在D 内必然有最大值和最小值,并且若在内部存在驻

,由条件知,

,则在这个点

,则u (x ,y )不是极值点,当然

也不是最值点,故u (x ,y ) 的最大值点和最小值点必定都在区域D 的边界上。

4. 设

上侧,则I=( )。

【答案】D

【解析】补三个曲面

,则

,其中

是平面

在第一卦限部分的

第 3 页,共 52 页

5. 设L 为

从沿曲

线

点的曲线,则曲线积

【答案】C 【解析】解法一:

解法二:将积分表示成

,则

则积分在全平面与路径无关。取特殊路径即如图所示的折线,有

6. 设三向量a , b , c 满足关系a+b+c=0,则a ×b=( )。

【答案】B 【解析】

二、填空题

第 4 页,共 52 页