当前位置:问答库>考研试题

2017年湖北师范大学概率论与数理统计复试仿真模拟三套题

  摘要

一、计算题

1. 已知事件A ,B 满足

【答案】因为

由此得

所以

2. 设随机变量X 服从区间(2,5)上的均匀分布,求对X 进行3次独立观测中,至少有2次的观测值大于3的概率.

【答案】在一次观测中,观测值大于3的概率为

设Y 为此种观测(X>3)的次数,则Y 〜b (3,2/3),由此得

3. 已知在文学家萧伯纳的An Intelligent Woman’s Guide To Socialism.—书中,一个句子的单词数X 近似地服从对数正态分布,即中的单词数分别为

求该书中一个句子单词数均值. 【答案】正态分布

的最大似然估计.

的参数的最大似然估计分别为样本均值和方差. 即

由于最大似然估计具有不变性,因而

4. 设随机变量X 的分布函数为

的最大似然估计为

今从该书中随机地取20个句子,这些句子

记P (A )=P,试求P (B ).

试求

【答案】X 的密度函数为

所以

由此得

5. 某地区成年男子的体重X (kg )服从正态分布

0.25.

(1)求. 少?

【答案】(1)由

由此解得即,

又由

查表知

由此解得

其中

所以“5名中至少有两人体重超过65kg”的概率为

6. 设伽玛分布,即

【答案】

是来自如下总体的一个样本

,求的后验期望估计. 与的联合分布为

于是的后验分布为

若已知

各为多少?

(2)若在这个地区随机地选出5名成年男子,问其中至少有两人体重超过65kg 的概率是多

(2)记Y 为选出的5名成年男子中体重超过65kg 的人数,则

若取的先验分布为

这是一个伽玛分布因而的后验期望估计为

7. 某班n 个战士各有1支归个人保管使用的枪,这些枪的外形完全一样,在一次夜间紧急集合中,每人随机地取了1支枪,求至少有1人拿到自己的枪的概率.

【答案】这是一个配对问题. 以A ;记事件“第i 个战士拿到自己的枪”,i=l,2,…,n. 因为

所以由概率的加法公式

当n 较大时,上式右端近似于

8. (巴拿赫问题)某数学家有两盒火柴,每盒都有n 根,每次使用时,他任取一盒并从中抽出一根,问他发现一盒空而另一盒还有是此概率的2倍.

先计算样本空间中的样本点个数,因为每次都是等可能地取A 盒或B 盒,共取了2n —r+1次,故样本空间中共有

个样本点.

个,因此

事件E 发生可分两段考察,前2n —r 次中A 盒恰好取到n 次,且次序不论,最后一次(第2n_r+l次)必定取到A 盒,这样才能发现A 盒已空,此种样本点共有

所求概率为

譬如,取

可算得

根的概率是多少?

【答案】由对称性知,只要计算事件E=“发现A 盒空而B 盒还有r 根”的概率即可,所求概率