2017年山东大学晶体材料研究所829量子力学考研仿真模拟题
● 摘要
一、证明题
1. (1)对于任意的厄米算符,证明其本征值为实数. (2)证明厄米算符属于不同本征值的本征函数彼此正交. (3)对于角动量算符
证明它是厄米算符,并且求解其本征方程.
因为存在
数
(2)证:因为而(3)因为
所以
即正交
而
所以
设本征方程为
其中为本征值,上式可改写为
易解出
C 为积分常数,可由归一化条
即为厄米算符。
具有周期性,
所以
即本征值为实
【答案】(1)证:对于厄米算符
件决定. 又因为波函数满足周期性边界条件的限制,
由此可得数记为
即为其本征函数. 相应的本征方程为
即角动量z 分量的本征值为
是量子化的,相应本征函
再利用归一化条件可得
2. 设在电子的某自旋态中,测量自旋的x 分量和 >> 分量的平均值皆为零,则测电子自旋分量的平均值一定为
【答案】设在
或
证明这一点。
表象中,这自旋态的表示为:
则由自旋x 分量和; y 分量算符的表本为:
根据题给条件,有:
由此得:即:
或
要么自旋朝下
和
即都为自旋分量的本征态。在
这就意味着,此态要么是自旋朝上
这两个本征态中,
测量自旋分量的平无值分别为
二、计算题
3. 氢原子处在基态(1)r 的平均值; (2)动能的平均值; (3)动量的概率分布函数. 【提示:
【答案】(1) r 的平均值即
5.10仿照5.3节,在直角坐标系中求解二维各向同性谐振子的能级
和简并度,与三维各向同性谐振子比较.[上]3.9题 (2)由维里定理
(为势能关于r 的幂次)有动能平均值
其中玻尔半径
】
求:
而氢原子基态能量为
故
5.10仿照5.3节,在直角坐标系中求解二维各向同性谐振子的能级和简并
度,与三维各向同性谐振子比较.[上]3.9题5.10仿照5.3节,在直角坐标系中求解二维各向同性谐振子的能级和简并度,与三维各向同性谐振子比较.
4. 自旋在
方向的粒子,磁矩为置于沿z
方向的磁场中,写出其哈密顿量,并求其
概率幅与时间的关系。 【答案】将上述自旋在
方向的粒子(譬如电子)置于沿z 方向的磁场B 中观察其概率幅的
变化。这时的哈密顿矩阵为:
式中,
是泡利矩阵,
为粒子的磁矩。电子负电,从而自旋磁矩
与角动量的方
向相反。当自旋角动量和磁场同沿z 方向时,磁矩沿-z 方向。 可得薛定谔方程为:
即:
积分后得:
取t=0时刻的初始条件为则:
式中,
围绕极轴转动,相
由上式可以看出,粒子的自旋矢量始终与极轴保持固定的夹角但以角速度当于经典电磁学中磁偶极子在外磁场中拉莫旋进的角速度,如图所示。
相关内容
相关标签