当前位置:问答库>考研试题

2017年清华大学物理系841量子力学考研冲刺密押题

  摘要

一、计算题

1. 两个互作用可以忽略的电子在一维线性谐振子势场中运动,写出系统基态和第一激发态的总波函数。

【答案】单电子波函数的空间部分:

二电子总波函数应为反对称: 基态:第一激发态:

2. 两个电子处于自旋单态,

分别表示两个电子的算符。设的平均值。 则:

为空间任意给定的

两个方向的单位矢量,求关联系数C (a , b ),即

【答案】解法一:取为z 轴,在(x ,z )平面与夹角为由于

(在

表象)

(在

,则

表象)

解法二:

所以有:

解法三:

电子都处于自旋单态,故而

所以有:

所以有:

其中,

因为两个

3. 一质量为m 的粒子,可在宽为a 无限深势阱当中自由运动. 在t=0的初始时刻其波函数为

其中A 为实常数. (1)求A 使平均值?

(3)求t 时刻的波函数

满足归一化条件.

(2)如果进行能量测量,则能得到哪些能量值? 相应取这些能量值的概率又是多少? 再计算能量的

【答案】(1)无限深方势阱中粒子的本征波函数为初始时刻波函数可化为

由归一化条件有

(2)无限深方势阱中粒子的本征能量为

解得

.

故粒子可能测得能量即

测得能量的平均值为(3) t 时刻波函数为

4. 粒子在二维无限深势阱中运动

,(1)写出本征能量和本征波函数; (2)若粒子受到微扰

的作用,求基态和第一激发态能级的一级修正。

【答案】 (1)根据题意,易写出粒子在二维无限深势阱中本征能量和波函数。

(2)基态的一级能量修正

在计算第一激发态能级的一级修正时,由于存在两组简并态利用简并下能级的修正方法计算. 令

则可计算出微扰

所以微扰可表示成

的矩阵表达式

所以

得:

5. —自旋中的矩阵为

(1)不考虑空间运动,由求任意时刻f 的波函数

的粒子的哈密顿算符

为实常数。

其中,,在表象

确定自旋运动定态能量. 与定态波函数并求

的几率。

已知时,