2017年清华大学物理系841量子力学考研冲刺密押题
● 摘要
一、计算题
1. 两个互作用可以忽略的电子在一维线性谐振子势场中运动,写出系统基态和第一激发态的总波函数。
【答案】单电子波函数的空间部分:
二电子总波函数应为反对称: 基态:第一激发态:
2. 两个电子处于自旋单态,
分别表示两个电子的算符。设的平均值。 则:
为空间任意给定的
两个方向的单位矢量,求关联系数C (a , b ),即
【答案】解法一:取为z 轴,在(x ,z )平面与夹角为由于
(在
,
表象)
(在
,则
表象)
而
解法二:
所以有:
解法三:
电子都处于自旋单态,故而
所以有:
所以有:
其中,
因为两个
3. 一质量为m 的粒子,可在宽为a 无限深势阱当中自由运动. 在t=0的初始时刻其波函数为
其中A 为实常数. (1)求A 使平均值?
(3)求t 时刻的波函数
满足归一化条件.
(2)如果进行能量测量,则能得到哪些能量值? 相应取这些能量值的概率又是多少? 再计算能量的
【答案】(1)无限深方势阱中粒子的本征波函数为初始时刻波函数可化为
由归一化条件有
(2)无限深方势阱中粒子的本征能量为
解得
.
故粒子可能测得能量即
测得能量的平均值为(3) t 时刻波函数为
4. 粒子在二维无限深势阱中运动
,(1)写出本征能量和本征波函数; (2)若粒子受到微扰
的作用,求基态和第一激发态能级的一级修正。
【答案】 (1)根据题意,易写出粒子在二维无限深势阱中本征能量和波函数。
(2)基态的一级能量修正
在计算第一激发态能级的一级修正时,由于存在两组简并态利用简并下能级的修正方法计算. 令
则可计算出微扰
所以微扰可表示成
的矩阵表达式
所以
则
得:
5. —自旋中的矩阵为
(1)不考虑空间运动,由求任意时刻f 的波函数
的粒子的哈密顿算符
为实常数。
其中,,在表象
确定自旋运动定态能量. 与定态波函数并求
和
的几率。
已知时,
相关内容
相关标签