当前位置:问答库>考研试题

2018年华中农业大学园艺林学学院314数学(农)之工程数学—线性代数考研基础五套测试题

  摘要

一、解答题

1. 设二次

(Ⅰ)用正交变换化二次型(Ⅱ

)求【答案】

(Ⅰ)由

知,矩阵B 的列向量是齐次方程组Ax=0的解向量.

为标准形,并写出所用正交变换;

矩阵A 满足AB=0, 其

值(至少是二重)

根据

值是0, 0, 6.

正交化,

令的特征向量为

则是

的线性无关的特征向量.

由此可知

,是矩阵A 的特征

故知矩阵A

有特征值因此,矩阵A 的特征

那么由实对称矩阵不同特征值的特征向量相互正交,

解出

再对,单位化,得

那么经坐标变换

二次型化为标准形(Ⅱ)因为

所以由

进而

其中

于是

2.

已知三元二次型

(Ⅰ)用正交变换把此二次型化为标准形,并写出所用正交变换; (Ⅱ)若A+kE:五正定,求k 的取值. 【答案】(Ⅰ)因为A 各行元素之和均为0,

即值

由征向量.

因为

的特征向量.

是,由此可知

其矩阵A 各行元素之和均为0, 且满足

是A 的特征

可知-1是A 的特征值

,不正交,将其正交化有

1的线性无关的特

再单位化,可得

那么令

则有

(Ⅱ)因为A 的特征值为-1, -1, 0, 所以A+kE的特征值为k-l , k-1,k , 由A+kE正定知其特征值都大于0,

3. 设B

(I

)证明(II

)证明(III

)若【答案】⑴

矩阵

逆其中E 是n 阶单位矩阵.

且A 可对角化,

求行列式

(II )

(Ⅲ)设

则由

或1. 又存在可逆矩阵p ,

使或1.

4.

为三维单位列向量,并且

证明:

(Ⅰ)齐次线性方程组Ax=0有非零解; (Ⅱ)A

相似于矩阵

故Ax=0有非零解.

(Ⅱ)由(Ⅰ

)知向量.

又且

另外,由

故可知

为A 的特征值

,为4的2重特征值

为对应的特征向量.

为A 的3个

为4的单重特征值.

故A

有零特征值

的非零解即为

对应的特征

【答案】(Ⅰ)由于A 为3阶方阵,且

为两个正交的非零向量,从而线性无关.

线性无关的特征向量,