2018年海南大学农学院314数学(农)之工程数学—线性代数考研核心题库
● 摘要
一、解答题
1.
已知
的秩为
2.
二次型
求实数a 的值;
求正交变换x=Qy使得f 化为标准型. 【答案】
⑴由
可得
,
则矩阵
解得B 矩阵的特征值为
:当
时,
解
得对应的特征向量为
当时,
解
得对应的特征向量为
对于
解得对应的特征向量为
:
将单位转化为
:
. 令X=Qy,
则
2.
设的所有矩阵.
E 为三阶单位矩阵,求方程组Ax=0的一个基础解系;求满足AB=E
【答案】(1)对系数矩阵A 进行初等行变换如下:
得到方程组Ax=0
同解方程组得Ax=0
的一个基础解系为
(2)显然B 矩阵是一个4×3矩阵,设对矩阵(AE )进行初等行变换如
下:
由方程组可得矩阵B 对应的三列分别为
即满足AB=£;
的所有矩阵为
其中为任意常数.
3.
设
(1)计算行列式∣A ∣;
(2)当实数a 为何值时,
线性方程组
有无穷多解?并求其通解.
【答案】
若要使得原线性方程组有无穷多解,
则有及得
此时,
原线性方程组增广矩阵为
进一步化为行最简形得
可知导出组的基础解系为
非齐次方程的特解为
故其通解为k 为任意常
数.
4.
已知
其中E
是四阶单位矩阵是四阶矩阵A 的转置矩阵
,
求矩阵A
【答案】
对
作恒等变形,
有即
相关内容
相关标签