2017年厦门大学公共卫生学院847信号与系统之信号与系统考研强化模拟题
● 摘要
一、证明题
1. 试利用另一种方法证明因果系统的
(1)已
知
,证明:
(2)由傅氏变换的奇偶虚实关系已知
利用上述关系证明【答案】(1)已知偶分量:奇分量:则
,故
即可证
与
之间满足希尔伯特变换关系。
与和
被希尔伯特变换相互约束。 分别
为
的偶分量和奇分量
,
,
与
之间满足希尔伯特变换关系。 ,故
同理可证(2)由于
。
2. (1)试证明
(2)试证明【答案】(1)设
(n 为整数)是在区间中的正交函数集。
(n 为整数)不是区间(0,2π)内的完备正交函数集。
,且是不为0的整数,则在区间(0,2π)内,有
中的正交函数集。 内是正交函数集。
满足正交函数集的条件,故(2)由题(1)结论:取
,在区间
内
是区间在区间
因
内不是完备正交函数集。
该函数集并非完备,故 3. 已知
在
,求证傅里叶变换积分性质的另一公式:
【答案】根据傅里叶变换的积分性质:
所以
又因为
代入F (0)得
4. 若
(l )(2)
和为有限宽度的脉冲,试证明:
的面积为的宽度为
和和
的面积之积; 的宽度之和。
【答案】 (l )因为
对上式交换积分次序得
令,即,得
即证明了设
的面积等于和面积之积。 的宽度从t 3到t 4,即
(2)由卷积的图解表示,可以直观地证明这一结果。
的宽度从t 1到t 2,即
,如图(a )、
(b )所示。
图
根据①t=0时,②
时,
的关系,作出在不同位移时刻t 的图解如下:
,如图(a )所示。 在
时开始有非零值,如图(b )所示。
相关内容
相关标签