2018年天津大学精密仪器与光电子工程学院837量子力学考研核心题库
● 摘要
一、简答题
1. 现有三种能级【答案】一维谐振子.
2. 如果算符
请分别指出他们对应的是哪些系统。
对应一维无限深势阱;
对应
对应中心库仑势系统,例如氢原子;
表示力学量那么当体系处于的本征态时,问该力学量是否有确定的值?
【答案】是,
其确定值就是在本征态的本征值。
3. 请用泡利矩阵满足角动量对易关系。 【答案】电子的自旋算符
4. 什么是定态?若系统的波函数的形式为处于定态?
【答案】体系能量有确定的不随时间变化的状态叫定态,定态的概率密度和概率流密度均不随时间变化. 不是,体系能量有E 和-E 两个值,体系能量满足一定概率分布而并非确定值.
5. 简述波函数和它所描写的粒子之间的关系。
【答案】微观粒子的状态可用一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。 微观粒子的状态波函数则在
用算符的本征函数
展开
态中测量粒子的力学量^
得到结果为
的几率是
得到结果在
范围内的几率
为
6. 写出测不准关系,并简要说明其物理含义。 【答案】测不准关系时有确定的测值。
第 2 页,共 26 页
定义电子的自旋算符,并验证它们
其中,
问是否
物理含义:若两个力学量不对易,则它们不可能同
7. 试设计一实验,从实验角度证明电子具有自旋,并对可能观察到的现象作进一步讨论。 【答案】让电子通过一个均匀磁场,则电子在磁场方向上有上下两取向,再让电磁通过一非均匀磁场,则电子分为两束。
8. 假设体系的哈密顿算符不显含时间,而且可以分为两部分:一部分是(非简并)和本征函数
已知:另一部分
很小,可以看作是加于
它的本征值
上的微扰. 写出在非简并
状态下考虑一级修正下的波函数的表达式? 及其包括了一级、二级能量的修正的能级表达式。 【答案】
一级修正波函数为二级近似能量为其中
二、计算题
9. 在动量表象中,写出线谐振子的哈密顿算符的矩阵元。 【答案】在坐标表象中,线谐振子的哈密顿算符为:在动量表象中,该哈密顿算符为:
由于动量的本征函数为
故哈密顿算符的矩阵元为:
10.考虑一维双势阱:
(1)推导在x=a处波函数的连接条件. (2)对于偶宇称的解,即征值的数目.
【答案】(1)薛定谔方程可表示为
OT 为粒子质量,
为方程的奇点,在x=a
点处
对上述方程积分
得出
不存在,表现为
不连续。
求束缚态能量本征值满足的方程,并用图解法说明本
其中
第 3 页,共 26 页
(2)由题意知当x >a 时
,当-a <x <a 时,
其中
其中考虑到束缚态,因此解为
考虑到偶宇称,因此解为
结合x=a处的边界条件和此处的波函数连续条件,可得
化去A , C后可得,
此即能量本征值所需要满足的方程
.
图
所以满足此方程的本征值只有一个.
11.—体系未受微扰作用时只有三个能级:能量至二级修正。
【答案】至二级修正的能量公式为
其中
分别为一级和二级修正能量. n=1时,将m=2, 3代入II 式得
n=2时,将m=l, 3代入II 式可得
n=3时,将m=l, 2代入II 式可得
第 4 页,共 26 页
现在受到微扰的作用,
微扰矩阵元为
和c 都是实数. 用微扰公式求