2018年吉首大学数学与统计学院821高等代数之工程数学—线性代数考研仿真模拟五套题
● 摘要
一、解答题
1. 设A
为
的解为【答案】
由
利用反证法,
假设以有
解矛盾,故假设不成立,
则
由
.
2.
已知通解是
.
, 证明
【答案】
由解的结构知
是4阶矩阵,其中
是齐次方程组
故秩
是4维列向量. 若齐次方程组Ax=0的的基础解系.
得
有
有惟一解知
则方程组
. 即
即
可逆.
矩阵
且
有唯一解. 证明:
矩阵为A 的转置矩阵).
易知
于是方程组
只有零解.
使
.
所
只有零
有非零解,这与
有非零解,即存在
为可逆矩阵,
且方程组
又由
得
因
与
可知综上可知
,
3.
已知三元二次型
有
即故
都是
的解.
由
线性无关.
由
是
得的基础解系.
那么
其矩阵A 各行元素之和均为0, 且满足
其中
(Ⅰ)用正交变换把此二次型化为标准形,并写出所用正交变换; (Ⅱ)若A+kE:五正定,求k 的取值.
【答案】(Ⅰ)因为A 各行元素之和均为0,
即值
,
由征向量.
因为
是
的特征向量.
,由此可知是A 的特征
可知-1是A 的特征值
,不正交,将其正交化有
是1的线性无关的特
再单位化,可得
那么令
则有
(Ⅱ)因为A 的特征值为-1, -1, 0, 所以A+kE的特征值为k-l , k-1,k , 由A+kE正定知其特征值都大于0,
得 4.
已知
对角矩阵.
【答案】A 是实对称矩阵
,
可得a=2.
此时
是二重根,
故
于是
必有两个线性无关的特征向量,
于是
知
是矩阵的二重特征值,求a 的值,并求正交矩阵Q
使为
解(2E-A )x=0,
得特征向量将
正交化:
解(8E-A )x=0,
得特征向量先
专注考研专业课13年,提供海量考研优质文档!
再将单位化,得正交矩阵:
且有
二、计算题
5. 已知线性变换
求从变量【答案】
记系数矩阵. 因性变换的矩阵形式为
又,
到变量
,
的线性变换.
,则线性变换的矩阵形式为x=Ay,其中A 为它的
故A 是可逆阵,于是从变量
到变量
的线
于是即