2018年吉首大学数学与统计学院821高等代数之工程数学—线性代数考研强化五套模拟题
● 摘要
一、解答题
1.
设二次型
(1)证明二次型f
对应的矩阵为(2
)若
【答案】(1)由题意知,
记
正交且均为单位向量,证明f
在正交变换下的标准形为
故二次型/
对应的矩阵为(2)证明:
设则
而矩阵A
的秩
故f
在正交变换下的标准形为 2.
已知通解是
.
, 证明
【答案】
由解的结构知
是4阶矩阵,其中
是齐次方程组
故秩
是4维列向量. 若齐次方程组Ax=0的的基础解系.
,由于
所以
为矩阵对应特征值所以
为矩阵对应特征值
所以
的特征向量;
的特征向量; 也是矩阵的一个特征值;
又由
得
因
与
可知综上可知
,
有
即故
都是
的解.
由
线性无关.
由
是
得的基础解系.
那么
3.
设
(1)计算行列式∣A ∣;
(2)当实数a 为何值时,
线性方程组【答案】
有无穷多解?并求其通解.
若要使得原线性方程组有无穷多解,
则有及得
此时,
原线性方程组增广矩阵为
进一步化为行最简形得
可知导出组的基础解系为
非齐次方程的特解为
故其通解为k 为任意常
数.
4. 已知实二次
型
的矩阵A ,满
足
且
其
中
(Ⅰ)用正交变换xzPy 化二次型为标准形,并写出所用正交变换及所得标准形; (Ⅱ
)求出二次型【答案】(Ⅰ)
由由
知,B
的每一列
满足
的具体表达式.
知矩阵A
有特征值即
是属于A 的特征值
.
则
与—
j 正交,于是有
令
的线性无关特征向
显然B 的第1, 2列线性无关
,量,从而知A
有二重特征值
设
对应的特征向量为
解得
将
正交化得:
再将正交向量组
单位化得正交单位向量组:
令
(Ⅱ
)由于
则由正交变换
故
化二次型为标准形
相关内容
相关标签