2017年长春理工大学理学院432统计学[专业硕士]考研冲刺密押题
● 摘要
一、简答题
1. 要检验多个总体均值是否相等时,为什么不作两两比较,而用方差分析方法?
【答案】方差分析不仅可以提高检验的效率,同时由于它是将所有的样本信息结合在一起,也增加了分析的可靠性。
检验多个总体均值是否相等时,如果作两两比较,则需要进行多次的检验。随着增加个体显著性检验的次数,偶然因素导致差别的可能性也会増加(并非均值真的存在差别)。而方差分析方法则是同时考虑所有的样本,因此排除了错误累积的概率,从而避免拒绝一个真实的原假设。
2. 重复抽样和不重复抽样相比,抽样均值抽样分布的标准差有什么不同?
【答案】样本均值的方差与抽样方法有关。在重复抽样条件下,样本均值的方差为总体方差的即
去修正重复抽样时样本均值在不重复抽样条件下,样本均值的方差则需要用修正系数
的方差,即
对于无限总体进行不重复抽样时,可以按重复抽样来处理,因为其修正系数
对于有限总体,
当N 很大而n 很小时,
其修正系数
来计算。
3. 回归分析中的误差序列有何基本假定?模型参数的最小二乘估计
模型用于预测,影响预测精度的因素有哪些?
【答案】(1
)误差项是一个服从正态分布的随机变量,且独立,即
0的随机变量,即对于所有的值的方差都相同。 趋向于1; 也趋向于1,
这时样本均值的方差也可以按公式具有哪些统计特性?若)。独立性意味着对于一个特定的值,它所对应的与其他值所对应的不相关。误差项是一个期望值为
(2
)模型参数的最小二乘估计的统计特性:①线性,即估计量第 2 页,共 51 页 为随机变量的
线性函数;②无偏性
具有最小方差的估计量。 分别是的无偏估计;③有效性是所有线性无偏估计量中
(3)影响预测精度的因素有:①预测的信度要求。同样情况下,要求预测的把握度越高,贝_应的预测区间就越宽,精度越低;②总体y 分布的离散程度越大,相应的预测区间就越宽,预测精度越低;③样本观测点的多少n 。n 越大,相应的预测区间就越窄,预测精度越高;④样本观测点中,解释变量x 分布的离散度。x 分布越离散,预测精度越高;⑤预测点离样本分布中心的距离。预测点越远离样本分布中心预测区间越宽,精度越低,越接近样本分布中心间越窄,精度越高。
4. 简述统计分组的原则。
【答案】采用组距分组时,需要遵循不重不漏的原则。不重是指一项数据只能分在其中的某一组,不能在其他组 中重复出现;不漏是指组别能够穷尽。即在所分的全部组别中每项数据都能分在其中的某一组,不能遗漏。
为解决不重的问题,统计分组时习惯上规定“上组限不在内”。即当相邻两组的上下限重叠时,恰好等于某 一组上限的变量值不算在本组内,而计算在下一组内。而对于连续变量,可以采取相邻两组组限重叠的方法,根 据“上组限不在内”的规定解决不重的问题,也可以对一个组的上限值采用小数点的形式,小数点的位数根据所 要求的精度具体确定。
5. 欲调查广州市初中学生的身高情况,随机抽取100名广州市初中学生,测量了身高。
(1)用此例说明这几个统计概念,总体(population ), 样本(sample ), 参数(pammeter ), 统计量(statistics )。
(2)请说明如何对这100例身高数据进行描述性统计分析。
【答案】(1)总体(population )是包含所研宄的全部个体(数据)的集合,它通常由所研宄的一些个体组成。 本例中的总体是广州市所有初中学生。
样本(sample )是从总体中抽取的一部分元素的集合,构成样本的元素的数目称为样本量(sample size)。 本例中的样本是随机抽取的100名广州市初中学生,其中样本量为100。
参数(parameter )是用来描述总体特征的概括性数字度量,它是研究者想要了解的总体的某种特征值。本 例中广州市所有初中学生的平均身高即是一个参数。
统计量(statistic )是用来描述样本特征的概括性数字度量。它是根据样本数据计算出来的一个量,由于 抽样是随机的,因此统计量是样本的函数。随机抽取的100名广州市初中学生的平均身高即是一个统计量。
(2)所谓描述性统计分析,就是对一组数据的各种特征进行分析,以便于描述测量样本的各种特征及其所 代表的总体的特征。主要包括集中趋势的描述,可计算身高的均值,中位数和众数,也可采用箱线图直观的反映 数据的集中趋势以及是否存在异常值;离散程度的描述,可计算身高的方差,变异系数,四分位差或极差,也可 采用折线图或散点图等直观反映数据的离散程度;分布的偏态与峰度描述,可计算偏度和峰度值,或采用茎叶图 或直方图直观的反映分布是否与正态
第 3 页,共 51 页 区
分布或单峰偏态分布逼近。
6. 多元回归分析中为什么需要使用修正的判定系数(可决系数)来比较方程的拟合效果?是如何计算的?
【答案】在多元线性回归分析中,常用修正的判定系数,而不用多重判定系数来衡量估计模
型对样本观测值的拟合优度。这是由于多重判定系数
随着样本解释变量个数的增加
来越高(即的值越
是解释变量个数的增函数)。也就是说,在样本容量不变的情况,在模型中增加新
不是一个合适的指标,需加以的解释变量不会改变总离差平方和,但可能增加回归平方和,减少残差平方和,从而可能改变模型的解释功能。因此在多元线性回归模型之间比较拟和优度时,
调整。而修正判定系数
归模型方面要优于多重判定系数修正判定系数的计算公式为
7. 简述复合型时间序列的预测步骤。
【答案】复合型序列是指含有趋势性、季节性、周期性和随机成分的序列。对这类序列预测方法通常是将时间序列的各个因素依次分解出来,然后再进行预测,分解法预测通常按下面的步骤进行:
(1)确定并分离季节成分。计算季节指数,以确定时间序列中的季节成分。然后将季节成分从时间序列中分离出去,即用每一个时间序列观测值除以相应的季节指数,以消除季节性;
(2)建立预测模型并进行预测。对消除了季节成分的时间序列建立适当的预测模型,并根据这一模型进行预测;
(3)计算出最后的预测值。用预测值乘以相应的季节指数,得到最终的预测值。
8. 在什么条件下用正态分布近似计算二项分布的概率效果比较好?
【答案】当样本量n 越来越大时,二项分布越来越近似服从正态分布。这时,二项随机变量的直方图的形状接近正态分布的图形形状。即使对于小样本,当
然相当好,此时随机变量X 的分布是相对于其平均值
大于或等于5时,近似的效果就相当好。
9. 简述系数、c 系数、系数的各自特点。
【答案】(1)相关系数是描述
式为:式中,列联表数据相关程度最常用的一种相关系数。它的计算公《为列联表中的总频数,也即样本量。说系数适合
这个范围。
列联表的情况。C 系数的列时,二项分布的正态近似仍和都对称的。当p 趋于0或1时,二项分其值不会随着解释变量个数k 的増加而增加,因此在用于估计多元回 只要当n 大到使布将呈现出偏态,但当n 变大时,这种偏斜就会消失。一般来说,联表,是因为对于列联表中的数据,计算出的系数可以控制在(2)列联相关系数又称列联系数,简称c 系数,主要用于大于
第 4 页,共 51 页