2017年武汉大学数学与统计学院432统计学[专业学位]考研导师圈点必考题汇编
● 摘要
一、判断题
1.
回归模型中假定误差项是一个服从正态分布的随机变量,且相互独立。( )
【答案】×
2. 设总体
度为的置信区间是
【答案】
为:
3 设总体X
具有分布密度.
为一个样本,参数a 的矩估计为
【答案】
【解析】
由
4. 分别来自两个总体的两个样本,当样本容量足够大时,样本均值之差的抽样分布服从正态分布。( )
【答案】√
5. 农副产品收购价格指数的编制程序为:先计算各种商品的个体价格指数,然后依次计算小类指数、大类指数直至总指数。( )
【答案】√
6. 残差平方和是解释变量变动所引起的被解释变量的变差。( )
【答案】×
【解析】残差平方和是随机因素影响所引起的被解释变量的变差;回归平方和是指被解释变量的总体平方和与残差平方和之差。
则根据矩估计方法令
可得( ) 其中是未知参数。样本容量n=9, 样本均值( ) 则在保留三位小数下,未知参数的置信【解析】样本方差已知,且总体服从正态分布,故而未知参数的置信度为0.95的置信区间
7. 多元回归模型中的解释变量个数为那么回归方程显著性检验的F
统计量的第一自由度为
第二自由度为k 。( )
【答案】×
【解析】多元回归模型中的解释变量个数为k ,那么回归方程显著性检验的F 统计量的第一
自由度为k ,
第二自由度为
8. 概率密度曲线位于X 轴的上方并且与X 轴之间的面积为1。( )
【答案】√
【解析】概率密度函数是指用来代表连续型随机变量的概率分布的一种公式或运算,它的值始终大于等于0, 所以位于X 轴的上方,并且与X 轴之间的面积为1。
二、简答题
9. 简述判定系数的含义和作用。
【答案】(1)判定系数的含义
回归平方和占总平方和的比例称为判定系数,记为其计算公式为:
(2)判定系数的作用
判定系数测度了回归直线对观测数据的拟合程度。若所有观测点都落在直线上,残差平方
和
可见
x 完全无助于解释y 的变差,拟合是完全的;如果y 的变化与x 无关,此时
的取值范围是则
越接近于7,表明回归平方和占总平方和的比例越大,回归直线与各观测点越接近,用x 的变化来解释y 值变差的部分就越多,回归直线的拟合程度就越好;反之越接近于0, 回归直线的拟合程度就越差。
10.“假设检验的基本思路是:概率性质的反证法,主要依据的是:小概率事件原理”。你同意这种说法吗?简要叙述你对假设检验的理解和检验步骤。
【答案】同意。
假设检验所遵循的推断依据是统计中的“小概率原理”:小概率事件在一次试验中几乎是不会发生的。例如,在10000件的产品中,如果只有1件是次品,那么可以得知,在一次试验中随机抽取1件次品的概率就为此概率是非常小的。或者是说,在一次随机抽样试验中,次品几乎是不会被抽到的。反过来,如果从这批产品中任意抽取1件,恰好是次品,我们就可以断定,该次品率应该不是很小的,否则我们就不会那么轻易的就能抽到次品。从而,我们就有足够的理由否认产品的次品率是很低的假设。
假设检验的基本步骤为:第一,对所考察总体的分布形式或总体的某些未知参数做出某些假设,称之为原假设。第二,根据检验对象构造合适的检验统计量,并通过数理统计分析确定在原假设成立的条件下该检验统计量的抽样分布。第三,在给定的显著性水平下,根据抽样分布得出原假设成立时的临界值,由临界值构造拒绝域和接受域。第四,由所抽取的样本资料计算样本统
计量的取值,并将其与临界值进行比较,从而对所提出的原假设做出接受还是拒绝的统计判断。
假设检验就是利用样本中所蕴含的信息对事先假设的总体情况做出推断。假设检验不是毫无根据的,而是在一定的统计概率下支持这种判断。
11.简述时间序列的构成要素。
【答案】时间序列的构成要素分为4种,即趋势、季节性或季节变动、周期性或循环波动、随机性或不规则波动。
(1)趋势是时间序列在长时期内呈现出来的某种持续向上或持续下降的变动,也称长期趋势;
(2)季节性也称季节变动,它是时间序列在一年内重复出现的周期性波动;
(3)周期性也称循环波动,它是时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式变动;
(4)随机性也称不规则波动,是指偶然性因素对时间序列产生影响,致使时间序列呈现出某种随机波动。
12.统计分组标志选择的原则。
【答案】在进行统计分组标志选择时要遵循三个原则:
(1)应根据研宄目的与任务选择分组标志。同一研宄总体,研宄的目的不同,可选用的分组标志也不同。
(2)要选用能反映事物本质或主要特征的标志。一般情况下,社会经济现象有多种特征,在选择分组标志 时,可以使用这种标志,也可以选择另一种标志,这就需要根据被研究对象的特征,选择主要的、能抓住事物本 质的标志进行分组。
(3)要根据现象所处的历史条件及经济条件来选择标志。由于社会是不断发展的,在不同的历史条件与经 济条件下,选择的分组标志也不一样,要根据情况的变化而变化。
13.考虑总体参数的估计量,简述无偏估计量与最小方差无偏估计量的定义。
【答案】①无偏性(unbiasedness )是指估计量抽样分布的数学期望等于被估计的总体参数。设总体参数为所选择的估计量为如果则称为的无偏估计量。对于待估参数,不同的样本值就会得到不同的估计值。这样,要确定一个估计量的好坏,就不能仅仅依据某次抽样的结果来衡量,而必须由大量抽样的结果来 衡量。对此,一个自然而基本的衡量标准是要求估计量无系统偏差。尽管在一次抽样中得到的估计值不一定恰好 等于待估参数的真值,但在大量重复抽样时,所得到的估计值平均起来应与待估参数的真值相同,即希望估计量 的均值应等于未知参数的真值,这就是无偏性的要求。 ②最小方差无偏估计是在无偏估计类中使均方误差达到最小的估计量,即在均方误差
是的一个无偏估计量,都有
最小意义下的最优估计,它是在应用中人们希望寻求的一种估计量。设若对于的任一方差存在的无偏估计量