当前位置:问答库>考研试题

2018年安徽师范大学教育科学学院312心理学专业基础综合之现代心理与教育统计学考研核心题库

  摘要

一、概念题

1. 总体

【答案】总体(population )又译“母体”,统计学术语,指一个统计问题中研宄对象的全体。由具有某种研宄特征的个体构成。从总体中抽取一部分个体,就构成总体的一个样本。如,研宄小学生的推理能力,记X 为每个小学生的推理能力,则X 的任一个可能取值是一个个体,X 的所有可能取值的集合则是一个总体。如果随机抽取n 个小学生,测量他们的推理能力为.Y .\这就是一个取自总体X 的样本。可根据包含个体的数目,可分为有限总体和无限总体。总体本身的大小是有限还是无限,取决于研宄问题的推理范围。心理学研宄中常为无限总体。在推断统计中被定义为一个随机变量,可运用概率论等数学工具进行统计推断。

2. 非参数检验

【答案】非参数检验指对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验。常见的非参数检验有符号检验、秩和检验、中数检验等。其优点:(1)不需要对被检验的总体作出关于正态性或其他特定分布的假定;(2)容易理解、容易操作、应用范围广。缺点是功效较低,因为它常会丢失数据中的信息。经常属于大样本检验。

3. 统计检验力

【答案】统计检验力又称假设检验的效力是指假设检验能够正确侦察到真实的处理效应的能力,也指假设检验能够正确地拒绝一个错误的虚无假设的概率,因此效力可以表示为检验的效力越高,侦察能力越强。影响统计检验力的因素有:①处理效应大小,处理效应越明显,越容易被侦查到,假设检验的效力也就越大。②显著性水平a , a 越大,假设检验的效力也就越大。③检验的方向性,单侧检验侦察处理效应的能力高于双侧检验。④样本容量,样本容量越大,标准误越小,样本均值分布越集中,统计效力越高。

4. 古典概率

【答案】古典概率也叫先验概率,是指在特殊情况下直接计算的比值。计算方法是事件A 发生的概率等于A 包含的基本事件数M 与基本事件总数N 之比。古典概率是最简单的随机现象的概率计算,建立在这样几个特定条件上的,即:事件的互斥性、事件的等概率性以及事件组的完备性。

二、简答题

5. 2002年10月29日,《江南日报》发布中华英才网的调查报告,调查结果显示南京职工的人均月薪已达2690元,有人认为这一结果高估了南京人的月收入。你怎么看这个结果,试分析高估的原因。

【答案】我认为中华英才网的调查报告有可能高估了南京人的月收入。

(1)如果此调查高估了南京人的月收入,产生的原因主要是调查的过程中所选择的样本不具有代表性,也就是说选择到的样本只是一部分月薪偏高的人群,不能代表整个南京人的平均水平。从根本上说是因为没有在抽样调查中运用随机化原则。

中华英才网进行的调查存在取样偏差问题是因为被进行调查的大多数是收入偏高的知识分子阶层,而收入偏低的样本可能由于上网的机会比较少,而被抽样的可能性很小,所以通过中华英才网进行调查的样本不能有效推论整体南京人的月收入7尺平。

(2)抽样调查是根据部分实际调查结果来推断总体标志总量的一种统计调查方法,属于非全面调查的范畴。它是按照科学的原理和计算,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用所得到的调查标志的数据以代表总体,推断总体。

与其他调查一样,抽样调查也会遇到调查的误差和偏误问题。通常抽样调查的误差有两种:一种是工作误差(也称登记误差或调查误差),一种是代表性误差(也称抽样误差)。但是,抽样调查可以通过抽样设计,通过计算并采用一系列科学的方法,把代表性误差控制在允许的范围之内;另外,由于调查单位少,代表性强,所需调查人员少,抽样调查误差比全面调查要小。特别是在总体包括的调查单位较多的情况下,抽样调查结果的准确性一般高于全面调查。因此,抽样调查的结果是非常可靠的。

抽样调查数据之所以能用来代表和推算总体,主要是因为抽样调查本身具有其他非全面调查所不具备的特点,主要是:

①调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。

②是以抽取的全部样本单位作为一个代表团,用整个代表团来代表总体。而不是用随意挑选的个别单位代表总体。

③所抽选的调查样本数量,是根据调查误差的要求,经过科学的计算确定的,在调查样本的数量上有可靠的保证。

④抽样调查的误差,是在调查前就可以根据调查样本数量和总体中各单位之间的差异程度进行计算,并控制在允许范围以内,调查结果的准确程度较高。

基于以上特点,抽样调查被公认为是非全面调查方法中用来推算和代表总体的最完善、最有科学根据的调查方法。

但是,要使抽样调查更具有代表性,需要在其中运用随机化原则,即在抽样时,总体中每一个个体是否被抽取,并不由研究者主观决定,而是每一个个体按照概率原理被抽取的可能性相等。只有这样,才能根据对样本统计量的分析,以样本统计量来估计总体参数。

6. 中数,众数,几何平均数,调和平均数各适用于心理与教育研究中的哪些资料?

【答案】中数的适用条件:①当一组观测结果中出现两个极端数目时;②当次数分布的两端数据或个别数据不清楚时,只能取中数作为集中趋势的代表值;③当需要快速估计一组数据的代表值时,也常用中数。

众数的适用条件:①当需要快速而粗略地寻求一组数现代心理与教育统计学据的代表值时;②当一组数据出现不同质的情况时,可用众数表示典型情况,如工资收入、学生成绩等常以次数最多者为代表值;③当次数分布中有两极端的数目时,除了一般用中数外,有时也用众数;④当粗略估计次数分布的形态时,有时用平均数与众数之差,作为表示次数分布是否偏态的指标;⑤当一组数据中同时有两个数值的次数都比较多时,即次数分布中出现双众数时,也多用众数来表示数据分布形态。

几何平均数的适用资料:当要计算教育经费增加率、学习方面的进步率和学生或人口増加率的估计时,可使用几何平均数。

调和平均数的适用资料:在心理与教育研究方面的应用,主要是用来描述学习速度方面的问题。调和平均数作为一种集中量数,在描述速度方面的集中趋势时,优于其他集中量数。在有关研究学习速度的实验设计中,反应指标一般常取两种形式:一是工作量固定,记录各被试完成相同工作所用的时间。二是学习时间一定,记录一定时间内各被试完成的工作量。由于反应指标不同,在计算学习速度时也不一样,这是应用调和平均数要特别注意的地方。

7. 对两个以上平均数两两之间的差异检验为什么不能两两之间进行t 检验?

【答案】同时比较的平均数越多,其中差异较大的一对所得t 值超过原定临界值的概率就越大,这时《错误的概率将明显增加,或者说本来达不到显著性水平的差异就很容易被说成是显著了,这时用f 检验就不适宜。比如要比较3个总体平均数之间的差异,如果用t 检验就需要比较3

8. 说明下面符号代表的意义。

【答案

】次,假如每次比较的置信区间为95%, 那么3

次比较后检验的可靠性就降低为

三、计算题