当前位置:问答库>考研试题

2017年长春理工大学理学院432统计学[专业硕士]考研强化模拟题

  摘要

一、简答题

1. 若有线性回归模型

问:

(1)该模型是否违背古典线性回归模型的假定,请简要说明。

(2)如果对该模型进行估计,你会采用什么方法?请说明理由。

【答案】(1)该模型违背了古典线性回归模型的假定。古典线性回归模型要求误差项具有等方差性,即对于不同的自变量x 具有相同的方差。而由题意可知,误差项的方差为

量有关。

(2)如果对该模型进行估计,会采用加权最小二乘法。加权最小二乘法是在平方和中加入权

数以调整各项在平方和中的作用。即寻找参数的估计值使得离差平方和

与自变

其中

达到最小。这样,就消除了异方差性的影响。

2. 利用相关系数如何判断变量之间相关的方向和相关关系的密切程度?

【答案】相关系数r 的取值范围在关关系;若

相关关系;若

相关关系。

说明两个变量之间的线性关系越强

时. 可视为中度相关

;说明两个变量之间的线性关系越弱。对于一时,

可视为高度相关时,说明两个变量之间的个具体的r 取值,根据经验可将相关程度分为以下几种情况:

当时。视为低度相关;当之间。若表明变量之间存在正线性相表明x 与y 之间存在负线性相关关系;若表明x 与y 之间为完全负线性相关关系。可见当表明x 与y 之间为完全正线性时,y 的取值完全依赖于X ,二者之间即为函数关系;当r=0时,说明两者之间不存在线性相关关系,但可能存在其他非线性

相关程度极弱,可视为不相关。但这种解释必须建立在对相关系数的显著性检验的基础之上。

3. 什么叫变异、变量和变量值,试举例说明。

【答案】标志在同一总体不同总体单位之间的差别称为变异。例如:人的性别标志表现为男、女;年龄标志表现为20岁、30岁等。

变异标志又称为变量,是说明现象某种特征的概念,其特点是从一次观察到下一次观察结果会呈现出差别或 变化。变量的具体取值称为变量值。具体包括:

(1)分类变量,如“性别”就是分类变量,其变量值为“男”或“女”;

“二等品”、“三等品”、(2)顺序变量,如“产品等级”就是顺序变量,其变量值可以为“一等品”、

“次品”等;

(3)数值型变量,如“年龄”是连续数值型变量,变量值为非负数;“企业数”是离散数值型变量,变量 值为 1,2,……

4. 欲调查广州市初中学生的身高情况,随机抽取100名广州市初中学生,测量了身高。

(1)用此例说明这几个统计概念,总体(population ), 样本(sample ), 参数(pammeter ), 统计量(statistics )。

(2)请说明如何对这100例身高数据进行描述性统计分析。

【答案】(1)总体(population )是包含所研宄的全部个体(数据)的集合,它通常由所研宄的一些个体组成。 本例中的总体是广州市所有初中学生。

样本(sample )是从总体中抽取的一部分元素的集合,构成样本的元素的数目称为样本量(sample size)。 本例中的样本是随机抽取的100名广州市初中学生,其中样本量为100。

参数(parameter )是用来描述总体特征的概括性数字度量,它是研究者想要了解的总体的某种特征值。本 例中广州市所有初中学生的平均身高即是一个参数。

统计量(statistic )是用来描述样本特征的概括性数字度量。它是根据样本数据计算出来的一个量,由于 抽样是随机的,因此统计量是样本的函数。随机抽取的100名广州市初中学生的平均身高即是一个统计量。

(2)所谓描述性统计分析,就是对一组数据的各种特征进行分析,以便于描述测量样本的各种特征及其所 代表的总体的特征。主要包括集中趋势的描述,可计算身高的均值,中位数和众数,也可采用箱线图直观的反映 数据的集中趋势以及是否存在异常值;离散程度的描述,可计算身高的方差,变异系数,四分位差或极差,也可 采用折线图或散点图等直观反映数据的离散程度;分布的偏态与峰度描述,可计算偏度和峰度值,或采用茎叶图 或直方图直观的反映分布是否与正态分布或单峰偏态分布逼近。

5. 分层抽样与整群抽样有何异同?它们分别适合于什么场合?

【答案】(1)相同点:分层抽样和整群抽样都是需要事先按某一标志对总体进行划分的随机抽样。

不同点主要在于:分层抽样的划分标志与调查标志有密切关系,而整群抽样的划分标志不一定与调查标志有 关;分层抽样在总体的每个层内随机抽样,而整群抽样在总体全部群体中随机抽取一部分群体;比较计算公式可知,分层抽样的抽样误差取决于各层总体方差的平均数,而整群抽样的抽样误差取决于总体的群间方差;分层抽 样的目的(优点)主要是缩小抽样误差,满足推断各子总体数量特征的需要,而整群抽样的目的(优点)主要是 扩大抽样单位,简化抽样组织工作。

(2)适用场合:分层抽样用于层间差异大而层内差异小时,以及为了满足分层次管理决策需要时;整群抽样用于群间差异小而群内差异大时,或只有以群体为抽样单位的抽样框时等。

6. 请给出你所知道的概率抽样的组织方式。

【答案】概率抽样也称随机抽样,是指遵循随机原则进行的抽样,总体中每个单位都有一定的机会被选入样本。调查的实践中经常采用的概率抽样方式有以下几种:

(1)简单随机抽样。简单随机抽样指从包括总体N 个单位的抽样框中随机地、一个一个地抽取n 个单位作为样本,每个单位入样的概率是相等的;

(2)分层抽样。分层抽样是指将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、 随机地抽取样本,将各层的样本结合起来,对总体的目标量进行估计;

(3)整群抽样。整群抽样是指首先将总体中若干个单位合并为组,这样的组称为群,抽样时直接抽取群,然后对中选群中的所有单位全部实施调查;

(4)系统抽样。系统抽样是指将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范围内随机地抽取一个单位作为初始单位,然后按事先规定好的规则确定其他样本单位;

(5)多阶段抽样。采用类似整群抽样的方法,首先抽取群,但并不是调查群内的所有单位,而是再进一步抽样,从选中的群中抽取出若干个单位进行调查;因为取得这些接受调查的单位需要两个步骤,所以将这种抽样方式称为二阶段抽样;这里,群是初级抽样单位,第二阶段抽取的是最终抽样单位。将这种方法推广,使抽样的段数增多,就称为多阶段抽样。

7. 单因素方差分析的实质是什么?并说明单因素方差分析的步骤。

【答案】单因素方差分析的实质是研宄一个分类型自变量对一个数值型因变量的影响。 单因素方差分析的步骤为:

(1)按要求检验的个水平的均值是否相等,提出原假设和备择假设。

(2)构造检验统计量,计算各样本均值(3)计算样本统计量

(4)统计决策。比较统计量拒绝原假设。

8. 解释总体分布、样本分布和抽样分布的含义。

【答案】总体分布就是总体中所有个体关于某个变量(标志)的取值所形成的分布。假设X 为总体随机变量,那么总体分布就是指X 的分布。很显然,同一变量不同的总体或同一总体不同的变量,其分布是不同的。

样本分布就是样本中所有个体关于某个变量(标志)的取值所形成的分布。假设x 为总体随机变量X 在样本 中的体现,那么样本分布就是指x 的分布,或者说是关于《个观测值的分布。同样,同一变量不同的样本或同一 样本不同的变量,其分布是不同的。

一般意义上说,抽样分布就是样本统计量的概率分布,它由样本统计量的所有可能取值和与之对应的概率组 成。如果说样本分布是关于样本观测值的分布,那么抽样分布则是关于样本统计量的分布,而样本统计量是由样 本观测值计算而来的。具体地说,抽样分布就是从容量为W 的

样本总均值 的值。若误差平方和 拒绝原假设;反之,不能