当前位置:问答库>考研试题

2018年石河子大学农学院314数学(农)之工程数学—线性代数考研仿真模拟五套题

  摘要

一、解答题

1. 求个齐次线件JTP

技使它的场础解系由下列向量成.

【答案】由题意,

设所求的方程组为

由这两个方程组知,

所设的方程组的系数都能满足方程组的基础解系为

2.

已知方程组量依次是

(Ⅰ)求矩阵 (Ⅱ

)求【答案】

当a=-1及a=0时,方程组均有无穷多解。 当a=-l时,

则当g=0时,

则值的特征向量.

线性相关,不合题意. 线性无关,可作为三个不同特征

的基础解系.

有无穷多解,矩阵A 的特征值是1, -1, 0, 对应的特征向

故所求的方程组可取为

解得此方程组

代入得,

(Ⅱ

3.

已知三元二次型

(Ⅰ)用正交变换把此二次型化为标准形,并写出所用正交变换; (Ⅱ)若A+kE:五正定,求k 的取值. 【答案】(Ⅰ)因为A 各行元素之和均为0,

即值

由征向量.

因为

的特征向量.

1的线性无关的特

,由此可知

是A 的特征

其矩阵A 各行元素之和均为0, 且满足

其中

的基础解系,

即为

的特征向量

可知-1是A 的特征值

,不正交,将其正交化有

再单位化,可得

那么令

则有

(Ⅱ)因为A 的特征值为-1, -1, 0, 所以A+kE的特征值为k-l , k-1,k , 由A+kE正定知其特征值都大于0,

4.

已知

与相似. 试求a , b , c 及可逆矩阵P ,使

【答案】由

于故B 的特征值

从而B

可以对角化为

分别求令

所对应的特征向量,

即a=5.

得A ,B 有相同特征值

再由得b=-2, c=2,于是

分别求A 的对应于特征值1,2, -1的特征向量得

:令

.

因此

则P 可逆,

二、计算题