2017年南开大学数学科学学院845高等代数考研冲刺密押题
● 摘要
一、选择题
1. 设向量组
线性无关,则下列向量组中,线性无关的是( )
【答案】C 【解析】方法1:令
则有
由
线性无关知,
该方程组只有零解方法2:对向量组C ,由于
从而
线性无关,且
因为 2. 设
A. 合同且相似 B. 合同但不相似 C. 不合同但相似 D. 不合同不相似 【答案】A
【解析】因为A ,B 都是实对称阵,且B 有4个特征值
第 2 页,共 40 页
线性无关.
所以向量组线性无关.
则A 与B ( ).
又因为
即A 也有4个特征值0,0,0,4. 因而存在正交阵
其中
故A 〜B.
再由
是正交阵,知T 也是正交阵,从而有
且由①式得
使
因此A 与B 合同. 3. 二次型
A. 正定 B. 不定 C. 负定 D. 半正定 【答案】B 【解析】方法1
方法2 设二次型矩阵A ,则
是不定二次型,故选B. 是( )二次型.
由于因此否定A ,C ,A 中有二阶主子式
从而否定D ,故选B.
4. 下面哪一种变换是线性变换( )
.
【答案】C
【解析】
,而
不一定是线性变换,
比如
不是惟一的.
分别为A ,B 的伴随矩阵,
.
则
也不是线性变换,
比如给
5. 设A 为n 阶可逆矩阵,交换A 的第1行与第2行得B ,则有( ).
A. 交换A*的第1列与第2列得B* B. 交换A*的第1行与第2行得B*
第 3 页,共 40 页
C. 交换A*龙第1列与第2列得-B* D. 交换A*的第1行与第2行得-B* 【答案】C
【解析】解法1:题设P (1, 2)A=B,所以有
又
所以有
即A*右乘初等阵P (1,2)得-B*
解法2:题设P (1,2)A=B,所以丨B 丨=-丨A 丨. 因此
即
二、分析计算题
6. 设分块矩阵
(1)(2)
【答案】(1)因为两边取行列式得
(2)
7. 计算n 阶行列式
其中A 、D 都可逆,证明:
【答案】由于因而猜想
第 4 页,共 40 页