2016年广西大学材料科学与工程学院2203量子力学(同等学力加试)复试笔试仿真模拟题
● 摘要
一、简答题
1. 写出测不准关系,并简要说明其物理含义。 【答案】测不准关系时有确定的测值。
2. 以能量这个力学量为例,简要说明能量算符和能量之间的关系。 【答案】在量子力学中,能量
用算符表示,
当体系处于某个能量态
3. 将描写的体系量子状态波函数乘上一个常数后,所描写的体系量子状态是否改变? 【答案】不改变。根据
对波函数的统计解释,描写体系量子状态的波函数是概率波,由于
粒子必定要在空间中的某一点出现,所以粒子在空间各点出现的概率总和等于1,因而粒子在空间各点出现概率只决定于波函 数在空间各点的相对强度。
4. 完全描述电子运动的旋量波函数为
分别表示什么样的物理意义。
【答案
】
表示电子自旋向
下
表示电子自旋向上
的几率。
位置
在
处的几率密度
;
试述
及
的作用是得到这一本征值,即
当体系处于一般态
的本征态
时,算符对
的作
时,算符对态
物理含义:若两个力学量不对易,则它们不可能同
,即用是得到体系取不同能量本征值的几率幅(从而就得到了相应几率)
二、计算题
5. 氢原子处在基态(1)r 的平均值; (2)动能的平均值; (3)动量的概率分布函数. 【提示:
【答案】(1) r 的平均值即
第 2 页,共 39 页
求:
】
5.10仿照5.3节,在直角坐标系中求解二维各向同性谐振子的能级
和简并度,与三维各向同性谐振子比较.[上]3.9题 (2)由维里定理
(为势能关于r 的幂次)有动能平均值
其中玻尔半径
而氢原子基态能量为
故
5.10仿照5.3节,在直角坐标系中求解二维各向同性谐振子的能级和简并
度,与三维各向同性谐振子比较.[上]3.9题5.10仿照5.3节,在直角坐标系中求解二维各向同性谐振子的能级和简并度,与三维各向同性谐振子比较.
6. 已知厄米算符. (1)在A 表象中算符
满足
的矩阵表示。
且
求:
(2)在B 表象中算符的本征值和本征函数。 (3)从A 表象到B 表象的么正变换矩阵S 。 【答案】(1)由于所以,
在A 表象中算符的矩阵是
:设在A 表象中算符
的矩阵是由于
所以:
则有:
所以:
则有:令
其中为任意实常数,得在A 表象中的矩阵表示式为:
(2)类似地,可求出在B 表象中算符的矩阵表示为:
利用
得:
所以算符的本征值是
因为在A 表象中,算符的矩阵是对角矩阵,
由于是厄米算符,
第 3 页,共 39 页