当前位置:问答库>考研试题

2018年长江大学园艺植物资源与利用314数学(农)之工程数学—线性代数考研核心题库

  摘要

一、解答题

1.

当a , b 为何值时,存在矩阵C 使得AC-CA=B,并求所有矩阵C.

【答案】显然由AC-CA=B可知,若C 存在,则必须是2阶的方阵,设则AC-CA=B

可变形为

即得到线性方程组

若要使C 存在,则此线性方程组必须有解,于是对方程组的增广矩阵进行初等行变换如下,

故当a=-1,b=0时,线性方程组有解,即存在矩阵C , 使得AC-CA=B. 此时

所以方程组的通解为

也就是满足AC-C4=B的矩阵C 为

其中

为任意常数.

2.

已知

二次型的秩为

2.

求实数a 的值;

求正交变换x=Qy使得f 化为标准型.

专注考研专业课13年,提供海量考研优质文档!

【答案】

⑴由可得

则矩阵

解得B

矩阵的特征值为:

时,

得对应的特征向量为

当时,解得对应的特征向量为

对于

解得对应的特征向量为:

将单位转化为:

. 令

X=Qy,

其中

E 是四阶单位矩阵

3.

已知

是四阶矩阵A 的转置矩阵,

求矩阵A

【答案】对

作恒等变形,有即

由故矩阵可逆.

则有

以下对矩阵做初等变换求逆,

专注考研专业课13年,提供海量考研优质文档!

所以有

4. 设

(1

)计算行列式∣A ∣;

(2)当实数a 为何值时,线性方程组【答案】

有无穷多解?并求其通解.

若要使得原线性方程组有无穷多解,则有及得

此时,原线性方程组增广矩阵为

相关内容

相关标签