2018年长安大学环境科学与工程学院314数学(农)之工程数学—线性代数考研基础五套测试题
● 摘要
一、解答题
1. 设三阶方阵A 、B
满足式
的值.
其中E 为三阶单位矩阵.
若
求行列
【答案】
由矩阵
知则
. 可
逆.
又
故
即
所以
即
而
故
2.
设矩阵
求一个秩为2的方阵B. 使
【答案】
令
即
取.
进而解得的另一解为则有
.
的基础解系为:
方阵B 满足题意.
令
3. 证明n
阶矩阵
与相似.
【答案】
设 分别求两个矩阵的特征值和特征向量为,
故A 的n 个特征值为
且A 是实对称矩阵,则其一定可以对角化,且
所以B 的n
个特征值也为
=-B的秩显然为1,故矩阵B 对应n-1
重特征值
对于n-1
重特征值由于矩阵(0E-B )
的特征向量应该有n-1个线性无关,进一步
矩阵B 存在n 个线性无关的特征向量,即矩阵B 一定可以对角化,且从而可
知n
阶矩阵
与相似.
4. 设n 维列向
量
【答案】
记
线性无关,其中S 是大于2的偶数. 若矩
阵
试求非齐次线性方程组
的通解.
方程组①化为:
整理得
,由
线性无关,得
专注考研专业课
13年,提供海量考研优质文档!
显然①与②同解.
下面求解②:
对②的增广矩阵作初等行变换得(注意X 是偶数)
从而组的基础解系为
数
.
有无穷多解.
易知特解为
从而②的通解,即①的通解为
对应齐次方程A 为任意常
二、计算题
5. 用初等行变换把下列矩阵化为行最简形矩阵:
(1)
(2)
(3)
(4)
【答案】(1)
相关内容
相关标签